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ABSTRACT

AN EXPLORATION OF INFORMATION PROCESSING IN DIFFUSION MODELS

by Paul Jason Mello

Denoising diffusion probabilistic models have emerged as a powerful class of density

modeling techniques. Characterized by their foundations in non-equilibrium

thermodynamics, they are capable of modeling complex data distributions and generating

novel samples. Their success in high quality sampling has resulted in significant research

in sampling efficiency, improved estimation, and model control. Information theory

provides tools for the exploration of diffusion models generative dynamics. Specifically,

we explore two domains; Information-imbalanced data sets and score functions for

recommendation systems. Through our exploration we observe an interesting

phenomenon where certain classes of training data are more likely to be reconstructed

than others. We propose information-theoretic reasoning as to why this phenomenon

emerges across data sets and posit potential solutions to counteract this observation. We

then apply denoising diffusion probabilistic models to recommender systems. We

introduce a Score-based Diffusion Recommender Module (SDRM) to generate synthetic

data for recommendation systems which accurately captures the sparse nature of this

training data, while respecting user privacy. We show our generated samples are capable

of fully replacing and or augmenting the initial training data, while boosting

recommender model performance by an average improvement of 4.5% in both Recall@k

and NDCG@k while retaining user privacy by achieving 99% dissimilarity.
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1 INTRODUCTION

In late 2015 DPMs were introduced in [1], ushering in a new class of EBMs. These EBMs

take the form of deep, likelihood-based generative models parameterized with an arbitrary

constant. They demonstrate the ability to synthesize high quality samples [2], but historically,

probabilistic models have seen uncompromising trade-offs between tractability and flexibility.

Tractable models allow for straightforward evaluation metrics and provide the ability to easily

fit Gaussian data distributions. Simultaneously, tractable models tend to suffer from the

inability to reconstruct deeply rich data. Whereas, flexible models are designed to fit the

structure of arbitrary data distributions, but are often intractable. This has lead to

approximations which attempt to minimize, but not eliminate, this trade-off [3].

GANs [4] arose as a popular solution to this trade-off. This technique pits two models, a

generative model and a discriminative model, against each other. The generative model

attempts to fit the training data distribution, while the discriminator model estimates the

probability that a sample has come from the training data, as opposed to the generative model.

This method has exhibited better sample quality than their likelihood-based counterparts such

as VAEs [5]. VAEs are latent variable models which leverage a probabilistic encoder to feed a

data distribution into a compressed latent Gaussian distribution, then are trained to decode the

latent variable. Despite their success, the processes responsible for GANs have traditionally

been unstable. This has ultimately required specific architectural designs to stabilize models

during training [6].

A now viral class of deep generative models known as DDPMs have since dethroned

GANs for their ability to synthesize high quality samples through non-equilibrium

thermodynamics [7]. These generative models have captured the public’s imagination for their

capabilities of data transformations between any data modality and distribution. They have

found use in large language models [8] and synthesizing data to improve final training
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accuracy [9]. These results demonstrate only a small fraction of the extraordinary versatility of

diffusion models that have resulted in disruptions across various industries and fields.

While diffusion models have demonstrated exceptional results in a wide range of tasks, the

intricate mechanisms which drive these systems remain poorly understood. Denoising neural

networks arose as a solution for tractability in thermodynamic problems, but are even less

understood than diffusion. In this thesis, we explore the mechanisms driving diffusion from an

information theoretic-perspective. We study the effects of different parameters on diffusion

models and show that exact and class-based reconstructions of the input data are possible

when information loss is kept low. We explore diffusion processes and DNNs through various

connections including MMSE, MI, and SNR.

1.1 Information Theory

Information theory was established in 1948, following a seminal paper by Claude Shannon

titled “A Mathematical Theory of Communication” [10]. Shannon’s paper studies the

minimally sufficient bits necessary for the lossless transmission of information over a noisy

channel. A channel is considered noisy when random perturbations can find their way into the

transmission medium and can corrupt the data being transmitted. It has since served as the

basis for the quantification of information as a measure of entropy. Information theory defines

a definite bound on the quantity of information that can be communicated through a channel

between any two variables. Meaning that for any communication channel there is an upper

limit on the channel capacity and traversing noisy channels can only reduce this theoretical

limit.

Information theory has been used in numerous AI applications [11], [12], [13], and [14].

These approaches define a rising trend to study information as a means to understand a models

internal dynamics. While a definitive structural framework to interpret neural networks has not

yet been put forth, information theory is one avenue at our disposal to understand our model

architectures. As it has offered a unique perspective into the information maximizing
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processes inherent to neural architectures and the trendy forefront of interpretability research.

As François Fleuret, head of the Machine Learning Group from the University of Geneva

stated, ”Information theory is maybe the only toolbox that sometimes gives you some

certainties in this mess” [15].

1.1.1 Entropy

The entropy of a random variable X ∼ p(x) is defined as:

H(X) =−∑
x∈X

p(x) log(p(x)) (1)

Entropy approximates the minimal number of bits necessary to describe X through the use of

log(p(x)). Bits may be defined as binary operators that trace the uncertainty of possible bit

combinations of X .

We consider the case where the distributions are uniform between [0,1]. Here entropy

follows a concave parabolic curve which reaches a peak at .5. This describes the certainty with

which two random variables are equally likely to occur. This was shown through Gibbs’

inequality [16] which demonstrated that the information entropy of a distribution P must be

less than or equal to any other cross entropy distribution Q. Importantly, uniform distributions

also contain a few interesting properties including their ability to maximize differential entropy

and that their uniformity makes them robust to small additive noise perturbations. Maximizing

differential entropy is thus equivalent to finding the maximum point of uncertainty within a

probability density function. This will become a key component of the underlying idea in this

thesis. We define the differential entropy of a continuous random variable X as:

h(X) =−
∫

∞

−∞

p(x) log p(x)dx (2)

These innate properties offer a means to measure the uncertainty of a probability density

function. By measuring this uncertainty we can differentiate between desired and undesirable
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signals propagated by the input data. In the next section we cover KL divergence, a tool to

quantify this these differences.

1.1.2 Kullback-Leibler Divergence

KL divergence, also known as relative entropy, quantifies the information differences

between any two probability distributions. It measures the expected log-likelihood between

between two distributions defined by p(x) and q(x). This non-negative function has diverse

theoretical and practical applications. The discrete case of KL divergence is denoted as:

DKL(p|q) = ∑
x∈X

p(x) log
(

p(x)
q(x)

)
(3)

When distributions p(x) and q(x) have low KL divergence, the values they define are

considered similar. Conversely, when these values are large, these distributions are considered

to be dissimilar. The relative entropy of these variables defines a quantified value of

information divergence. For this reason it can be treated as a similarity measure between two

arbitrary distributions.

DKL(p|q) = ∑
x∈X

p(x) log
(

1
q(x)

)
−H(x) (4)

KL divergence is non-symmetric DKL(p∥q) ̸= DKL(q∥p) and non-negative. DKL is always

positive because the difference between distributions are absolute. In continuous distributions,

the summation may be replaced by an integral to operate over the range of a distribution.

DKL =
∫

∞

−∞

p(x) log
(

p(x)
q(x)

)
(5)

Divergence of a distribution can be especially challenging to compute accurately. As a

result, KL divergence is a rough estimator. Challenges arise in quantizing divergences because

they require an arbitrarily fine number of measurements for precision. Additionally, similarity
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in distributions p(x) and q(x) are defined by some sufficient statistic for measurement. These

sufficient statistic are achieved when there is no loss in information between p(x) and q(x).

This is a fundamental property of information theory known as MI. MI has opened up

significant opportunities to explore expectation-maximization algorithms and serves as the

fundamental component of this thesis.

1.1.3 Mutual Information

MI is defined as the shared entropy between random variables. It can be understood and

used in many different forms including as a quantification of shared entropy, dependency

measure, or saddle point for converging information. MI between two discrete variables X and

Y are denoted as I(X ;Y ). MI has a few notable properties such as its symmetry

I(X ;Y ) = I(Y ;X), non-negativity I(X ;Y )≥ 0, and that more data leads to more information

I(X1;X2;Z)≥ I(X1;Z). This later property, DPI, is incredibly important and will be covered in

the following section 1.1.4. For now, its worthy to mention that DPI is implied within MI

under the following:

I(X ;Z) = DKL(PZ|X ||PZ|PX)≤ D(PY |X ||PY |PX) = I(X ;Y ) (6)

The symmetric property of MI states that when X ,Y are variables that are fully dependent,

information known regarding X is information also known about Y . Conversely, when these

random variables are fully independent, they share no information. This spectrum of MI

follows a parabolic curve that spans between [0,∞]. It is unbounded just as we see in entropy

and is invariant to nonlinear transformations. MI may also be understood through the lens of

uncertainty. As entropy of a random variable H(X) becomes more certain, H(Y ) also becomes

more certain. This can be seen through the conditional entropy defined by H(X |Y ).

I(X ;Y ) = H(X)−H(X |Y ) (7)
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This uncertainty principle of MI provides a useful metric to analyze variables. Through

various mathematical principles. Fig. 1 demonstrates the useful properties of MI in a

geometric visualization.

Fig. 1. This geometric depiction of MI, taken from [17], demonstrates the versatile properties
of information between two random variables X and Y , as a measure of uncertainty defined
by equation 7. From this visualization we can decompose information into a sum of its parts
defined by individual and shared information. Figure from [17].

Traditionally, MI is seen to be constrained within some bound, however expanding to the

continuous case provides significantly more refined information quantities. Consider

I(X ;Y )≤ D(PY |X ||QY |PX), here QY and PY are uniquely equal as they are the minimal

representations necessary to bound MI to its upper limits on QY . When neither random

variables are discrete it becomes necessary to use the respective marginal distributions. The

marginals can be represented by the joint probability distribution of p(x,y):

I(X ;Y ) = ∑
x∈X

∑
y∈Y

p(x,y) log
(

p(x,y)
p(x)p(y)

)
(8)

Interestingly, MI can also be defined through the KL divergence between two random

variables [18] such that:
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I(X ;Y ) = DKL(p(x,y)||p(x)p(y)) = Ep(x,y) log
(

p(x,y)
p(x)p(y)

)
(9)

Borrowing ideas from calculus, these discrete time equations can be thought of as

subsections of a continuous time process. With this in mind we can define continuous

functions to measure the transformation of information through diffusion processes:

I(X ;Y ) =
∫

y

∫
x

p(x,y) log
(

p(x,y)
p(x)p(y)

)
dxdy (10)

So far, we have focused on instances containing two random variables. Expanding these

notions to three or more random variables, such as (X ,Y,Z), introduces additional complexity

that can be adequately captured by Markov chains. Markov chains, also known as Markov

kernels, have profound applications in statistical modeling and are the basis for stochastic

simulation methods as they describe a sequence of events as states and probabilities.

1.1.4 Data Processing Inequality

DPI is a core principle to information theory and a reoccurring one in this work. When

considering a Markov chain of three or more variables the joint distribution can be represented

as p(x,y,z) = p(x,y)p(z|y). Here the DPI becomes a fundamental property of MI. A Markov

chain of three random variables X −→ Y −→ Z describes the conditional distribution of Z to rely

on Y , which also relies on X . Meaning that processing can not increase the information in a

contained system, only maintain or reduce. The DPI can be seen in the equation below:

I(X ;Y )≥ I(X ;Z) (11)

For all systems which process and transform information across a channel, the information

extracted can only be less than or equal to the initial input information. An improved version
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of the DPI exists known as Donsker-Varadhan which relates D(P||Q) KL divergence to the

supremum of a class of functions.

These fundamental challenges of information processing become more apparent as we

consider signals sent through communication channels. These signals degrade over time due to

the addition of unintended noise. Information sent over these noisy channels should thus be

robust to noise perturbations, while remaining fully reconstructable at its endpoint. These

channels often contain finite bandwidth resulting in the necessity to compress the information

passing through the channel into some minimally sufficiency statistic capable of full

reconstruction.

1.1.5 Minimally Sufficient Statistics

DPI can be seen as a special instance of minimally sufficient statistics where the inequality

is determined to be equal. Consider the statistics of a data distribution p(X) such that the

sufficient information necessary to capture the exact data distribution is denoted as θ , or the

maximum entropy. Here we can describe the minimal statistics through likelihood.

I(θ ; p(X)) = I(θ ;X) (12)

Similar to Shannon’s theory on the minimal amount of bits necessary for perfect

reconstruction of a random variable sent through a noisy channel, [19] presented a

methodology to find the most compressed representation of a random variable such that all

information is necessary for a probabilistic reconstruction on pθ . It becomes non-trivial to

prove that there exists statistics θ which are minimally sufficient for an accurate

reconstruction. Although, this process does require that the probability density can be

factorized through Eq. 12. This is known as Fischer’s factorization theorem and is used to

guarantee the optimal statistic.
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1.1.6 Channels: Capacity and Additive White Gaussian Noise

Shannon’s work developed the foundations for information theory by defining the

necessary bits for transmission over a noisy channel. Shannon’s key finding was that a

channel’s capacity is linked to the maximum MI between the input and output. Informally, a

channel is any medium capable of transporting information. Formally, a channel is more

closely defined as a Markov kernel. Channel capacity refers theoretical transmission rate of

information through a channel. Often channels are structured similarly to VAEs. Input is

encoded, passed through a channel, then decoded. These encoders and decoders compress and

decompress the information to transfer along a given channel. In instances of perfect

information transfer, the decoder may be considered deterministic. Unfortunately, channels are

often imperfect. Random noise can adversely affect the signal quality and potentially damage

reconstruction, making the introduction of unintended noise a significant obstacle. Conversely,

we can use this random noise to calculate the channel capacity by using conditional

probability and the marginal distribution p(x) to find the joint distribution of two random

variables X and Y .

C = sup
px(x)

I(X ;Y ) (13)

This equation defines a significant result for information theory, bounding channel capacity

to an upper limit on information throughput defined by MI. Although these bounds are

difficult to achieve due to noise, modern error correcting codes have pushed channel capacity

just shy of this theoretical limit. To achieve this, researchers have used the statistical properties

of noise and information to reduce the effects of unintended noise [20]. Rather than attempting

to decode the input containing stochastic noise, researchers add white Gaussian noise to

permute the stochastic noise into Gaussian noise. This AWGN channel is defined by the

”Gaussian capacity”:
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I(X ;Y ) =
1
2

log(1+
σ2

X

σ2
N
) (14)

Here X and N are independent Gaussian’s, Y is the total AWGN channel, and σ2
X

σ2
N

is the

SNR. While more thorough descriptions of channel capacity exist, these descriptions are

sufficient for this work.

A few interesting notions arise from these brief ideas. Primarily, additive noise contains

saddle points that minimize SNR. In order to make predictions based on the subsequent

information provided by a random variable X , the variance must remain normal and

independent of other random variables. Another is that the Gaussian capacity is invariant

under orthogonal transformations. This is because averaging over many rotations of variable X

can only increase the captured MI [21].

1.2 Control Theory

In continuous dynamic settings it is often critical, and difficult, to manage the potential

variation a system may encounter. Control theory attempts to stabilize these continuous linear

and nonlinear systems. In nearly all sensor systems, there is an expectation of compounding

uncertainty due to environmental noise or sensor inaccuracies. Control theory rectifies this

uncertainty by approximating future state dynamics. This is only possible when all necessary

environment variables are known. From this understanding control theory is the focus of

reducing variance in non-trivial chaotic systems.

It is commonly understood that dynamic systems are determined by the state x(t), its input

u(t), and its output y(t) at any given time t. We define these dynamic systems by the following

equations where A,B,C,D are matrices that describe the systems dynamic properties over

time.

x(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(15)
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Control theory is a field which is defined by its effectiveness to correct observations to

achieve a desired output state. Similar to empowerment, this notion depends on maximizing

the MI between the input and output states to guide a dynamic system. Practically, this

involves applying a feedback loop to adjust the noisy input data with error correcting

predictions to adjust the input given the error between the desired output and the expected

output. These error minimization techniques are shared with neural networks as they are

defined by minimizing loss between output and target variables. A well known example of

control theory, the Kalman filter, exists in the following section 1.2.1.

1.2.1 Kalman Filter

In this section, A ∈ Rm×n is a stable state of sensor inputs C while W represents the

covariance of the noise. xt ∈Rn represents the current state and Σt represents the covariance of

the error estimate. y ∈ Rm is the measurement and V is the sensor noise.

The ability to stabilize systems depends entirely on the problem and action space. A linear

system may have a trivial solution, but nonlinear systems often necessitate non-trivial solutions.

Compounding noise introduced by external factors will eventually lead to large variations over

time. The Kalman filter rectifies these non-trivial issues by applying local linearity through

covariance estimation. The Kalman filter consists of a two step feedback loop. In step one, a

prediction is made to correct the imperfect observation data of the prior state using the current

state by applying updates to its covariance matrix. The prediction step is denoted below:

x̂t|t = x̂t|t−1 +Σt|t−1CT (CΣt|t−1)C
T +V )

−1
(yt−Cx̂t|t−1) (16)

Σt|t = Σt|t−1−Σt|t−1CT (CΣt|t−1)C
T +V )

−1
CΣt|t−1 (17)

Notice that the next state is entirely dependent on the previous state. This is known as the

Markov property, which asserts that when all necessary state information is encapsulated into
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the present state, a prediction can be made about future states to an arbitrary degree of

accuracy. This notion is fundamental in Markovian systems and entails that future states

X(tn+1) are independent of past states X(tn−1) given the present state Xtn. This dictates an

intriguing relationship between prior and future state dynamics where the immediate future is

predictable.

Step two, known as the measurement update, incorporates the updated prediction with the

current observation state and merges them to correct any noise introduced to the input. The

update step can be seen below:

x̂t+1|t = Ax̂t|t (18)

Σt+1|t = AΣt|tA
T +W (19)

AΣt|tAT defines the signal’s covariance. These steps can be further merged and condensed

utilizing covariance through the process below:

Σt+1|t = AΣt|t−1AT +W −AΣt|t−1CT (CΣt|t−1CT +V )−1CΣt|t−1AT (20)

While counter intuitive, this recursive equation is able to estimate the covariance error

before the next observed data is introduced. This improves prediction accuracy in stable and

unstable environments. The Kalman filter is the best possible linear estimator due to the nature

of independent Gaussian random process remaining fundamentally linear. Notably, Takens’

Theorem [22] also demonstrates a similar capacity to predict future state dynamics, but does

so through higher dimensions. These concepts have become foundational in the study of

modern dynamical systems. This mixture of variance estimation and observation data provides

a way to correct accumulating errors when the covariance is known.
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For thoroughness, Taken’s theorem states that even though higher dimensions may be

”hidden”, they remain vastly interconnected with ”visible” dimensions. These hidden

dimensions exert influence on its future trajectory. Through Takens’ theorem, we understand

that for any continuous d-dimensional state vector, the state dynamics can be considered

deterministic. This deterministic relationships allows us to infer the hidden state dynamics

from the visible.

1.2.2 Minimum Mean Square Estimation

Similar to KL divergence in information theory, MMSE provides a similarity score

between any two random variables. For any two random Gaussian vectors x and y, they have a

conditional entropy of Ex|y and follow the form: N (x̄,Σx). Conditional entropy emphasizes

information I(X ;Y ) is also a measurement of the uncertainty of X once we observe Y . The

uncertainty of x in this instance describes a prior distribution which allows us to use the

following vector representation:

[
x
y

]
∼N

([
x̄
ȳ

]
,

[
Σx Σxy
ΣT

xy Σy

])
(21)

Through this understanding we can rewrite φMMSE as a similarity function of x̄− x:

MMSE = x̄− x∼N (0,Σx−ΣxyΣ
−1
y Σ

T
xy) (22)

MMSE is a fundamental measure for many disciplines which utilize statistics. It provides

an elegant way to iteratively reduce differences between the predicted and true data. This

powerful comparison metric provides component to systematically find the best model

estimator given a loss function.

1.3 Representation Learning

Artificial intelligence covers a broad selection of diverse fields including machine learning

and reinforcement learning. The core of these fields are defined by learning abstract
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representations of data in a latent space in order to compact and extract relevant information.

These learned representations are imperative to the success of all models and their subsequent

quality. “...[T]his is because different representations can entangle and hide more or less the

different explanatory factors of variation behind the data” [23].

Representation learning serves to reduce computational costs and reliance on manual

feature engineering for standard machine learning model tasks. These models learn to capture

the underlying data distribution and structure of the data. This is particularly useful as the

dimensionality of the data inputs increase. These representations are highly compressed input

data, but exhibit feature rich qualities. Representation learning also utilizes disentanglement.

Disentanglement is a method used to capture independent factors of data variation by

separating them to promote generalization and enhance model interoperability. ”The key idea

behind the unsupervised learning of disentangled representations is that real-world data is

generated by a few explanatory factors of variation which can be recovered by unsupervised

learning algorithms” [24]. Models built with latent properties inherently learn these data

representations as they represent the theoretical principal components which define the essence

of the data distribution.

1.3.1 Latent Variables Models

Latent variable models are a class of statistical models that attempt to map the underlying

distribution by introducing unobserved latent variables. These latent models can interpolate

between discrete and continuous spaces due to the nature of latent sampling from prior

distributions. Similar to likelihood models, they generate data from the conditional distribution

p(x|z). The goal is often to perform inference on the posterior distribution p(z|x) to gain

probabilistic insights into the latent variables. VAEs demonstrate the structure of latent

variables models through the use of a compression and decompression schemes to map input

data x to the latent variable z. In the context of multivariate discrete environments, one can
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leverage the marginal and conditional distributions in their respective forms shown below and

reinterpret these principles for continuous settings.

p(xi|yi) =
∫

p(xi|zi,yi)p(zi|yi)dzi (23)

p(zi|yi,xi) =
p(xi|zi,yi)p(zi|yi)

p(xi|yi)
(24)

From 24, we can infer the latent variable. From the conditional distribution, we can use the

ELBO 1.3.2 and KL divergence to measure similarity through the use of the marginal in 23.

These models serve as useful tools for understanding hidden patterns within data distributions.

They efficiently capture the estimation of structural relationships by leveraging probability

distributions to produce models which map features to latent representations. These are

defined by expectation-maximizing algorithms that utilize Bayesian inferencing techniques for

probabilistic modeling.

1.3.2 Evidence Lower Bound

In generative modeling, we can define latent variables and the generated data as being

modeled by a joint distribution p(x,z). Using likelihood-based methods, a model learns to

maximize the likelihood p(x) given x. Calculating this can be done in two ways, both of which

are computationally intensive. One must either integrate z out, which may be intractable, or

have access to the ground truth latent encoder on p(z|x). For our purposes we focus on

utilizing the chain rule of probability to derive an ELBO, or VLB, of the observed data

through the log-likelihood. Here qθ (z|x) defines a variational distribution.

Eqθ (z|x)[log
p(x,z)
qθ (z|x)

] (25)
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The ELBO objective can be optimized such that it becomes equivalent to the evidence

log p(x). Through this qθ (z|x), seeks to learn a real approximated posterior of p(z|x). Using

our learned distribution on qθ (z|x) and a real distribution on p(z|x) we can quantify their

differences through KL Divergence from 1.1.2. Using this notion we understand ELBO as

being bounded and a non-negative term that can never imply more or less information than

truly exists. Unfortunately, it is often the case we do not have access to p(z|x), making KL

divergence intractable. Instead, the maximization of the ELBO can be used as an alternative

for the minimization of KL Divergence. This ensures that our approximation remains close to

the true distribution. Furthermore, the ELBO strikes a balance between the fidelity and

complexity of the predicted distribution. This balance is crucial in preventing overfitting and

ensuring the generalizability of the model. As such, ELBO serves as a computationally

convenient and fundamental cornerstone in the framework of variational inferencing.

1.4 Diffusion Models

DPMs are a class of deep generative models that efficiently draw samples from a

distribution p(x). They consist of a class of latent variables models which merge probabilistic

approaches with sampling techniques. Fundamentally, these models are structured to learn to

denoise those latents through a DNN training process. These models have proven to be useful

in a variety of tasks such as, super-resolution [25], compression [26], imitating human

behavior [27], trajectory planning [28] and many more.

DPMs can be considered through the lens of SDEs [29]. Considering DPMs through the

dynamics of SDEs can provide significant insight into the inner mechanisms of the diffusion

process by formalizing their internal dynamics. Wielding the tools of SDE dynamics provides

the ability to demonstrate the transformation of x through T timesteps. This SDE is also

constrained by an upper and lower bound on information. We can consider this potential

variation in state possibilities as a form of information density which can be tightened by
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restricting the upper and lower bounds. By tightening these bounds we reduce the necessary

complexity of the search space a DNN is subject to during training.

DPMs are the central point of this work and will be expanded on in 2.1

1.4.1 Variational Bounds

DPMs are data transformers with large variance in output dynamics. In this way, there is

an upper and lower bound for each input-output pair, which is determined by the initial data

space and parameters. Moreover, these bounds define all potential variational outputs that are

possible in the trajectory space as we traverse our Markov chain of T steps. We may consider

this variance as the information density defined by the VLB of the marginal likelihood.

− log p(x)≤−VLB(x) = DKL (q(z1|x) ∥ p(z1))+Eq(z0|x) [− log p(x|z0)]+LT (x) (26)

In general, variation models are intractable without having prior knowledge about the

distribution of x. However, one can approximate this through normalization and differential

entropy. This can be seen as a case where an approximation of an otherwise intractable

problem of predicting the upper and lower bounds can by simplified by normalization of the

data structure and quantification of the information spread 1.1.1 without needing explicit

knowledge of the prior distribution. The VLB is a universal bound for all diffusion models as

it demonstrates information densities. Tightening this bound is akin to increasing the relevant

information a diffusion has access too at any given time, which allows it to make more

informed trajectory decisions.

The upper bound can be understood as a the theoretical information limit which is used to

prevent unnecessary information from being used during classification. The lower bound

ensures sufficient information is extracted from the input data. By bounding these information

densities through variational objectives we can catalyze the training of tractable models.
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1.5 Deep Neural Networks

DNNs are a subsection of machine learning where the model computationally reconstructs

an approximation of the neural connections in a human brain. Their fundamental structure is a

deep chain of neurons which individually take in inputs from the previous layers, multiply

their outputs by the current neurons weight, then, depending on an activation function, will

propagate the signal if it exceeds the activation function’s threshold. Through this iterative

process the data reaches the final layer then back-propagation updates all neuron weights

according the accuracy determined by the objective function. Regardless of generalization, a

DNN will learn to predict unseen data within the training distribution. This iterative process

gradually converges to some near optimal representation.

These neuron chains can be thought of as a series of complex Markov chains which

iteratively extract features in a manner that seeks to efficiently encapsulate all necessary

information in a highly compressed format [30]. DNNs take high dimensional data x, such as

images, and attempt to transcribe their sparse dimensional features into a dense lower

dimensional output y. This sparse data transformation describe a data input of x likely has very

low entropy shared with the output y. This ability to identify relationships from sparse

instances has been attributed to their sequential data processing capabilities. As feature

representations are fed into sequentially deeper hidden layers, each layer learns to extract,

abstract, and represent the features in an organized and distributed manner.

These neuron chains are linked together to create a neural network. A DNN consists of an

input layer, followed by a series of n hidden layers, and an output layer. The input and output

layer often have neuron counts defined by the respective data, whereas the hidden layers have

an arbitrary numbers of neurons that are dependant on a multitude of factors. As data flows

through these layers, the neural network separates the data and geometrically clusters similar

data points together. As we increase the number of hidden layers we find that DNNs perform

better on classification tasks. The process underpinning the feature extraction capabilities of
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DNNs is not well understood, but recent work [31] has shown that DNNs rely on affine splines

which create decision boundaries on the input space. These decision boundaries become

increasingly concentrated as training continues, leaving large regions of uninterrupted label

classifications.

1.6 The Information Bottleneck Principal

The information bottleneck method was first proposed in [32] by Naftali Tishby as a

framework for understanding the internal processes of deep neural networks. Utilizing

information theory to contextualize the foundational aspects of deep learning has emerged as a

prominent research direction for model interpretability. It focuses on an indirect calculation of

model capabilities by focusing on deep learning as an information extractor through MI

between input and output variables.

Neural networks are Markov chains which are improved through back propagation. Tishby

found that as information is propagated through each Markov chain, the sum of information

continues to decrease. This coincides directly with the decreasing information described by

DPI 11 and demonstrates that signals propogated through these networks continually compress

information. Moreover, the individual structure of each layer, including fully connected,

convolutional, and any other layer type, has an effect on the networks capabilities for

compression and information preservation. For example, convolutions exploit the spatial

invariance between weights for better compression while recurrent layers capture temporal

dependencies. Both of these layer types preserve information in different methods.

Tishby provides evidence of the transformation of information through layers and training

epochs. They found that as neural networks are trained the information processing of each

layer would first drift towards maximizing information, then in a second phase the model

would learn to compress the extracted information. The drift phase is characterized by the

early stages of training where a network rapidly learns to extract the relevant, information rich,

features from the input data. These internal representations are gradually refined towards
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maximizing the MI between the input and output variables. Refining these representations by

maximizing MI asserts that there are MSS which can express these shared representations.

The diffusion phase is significantly longer and starts immediately after the network extracts

most, if not all, relevant interdependent information. This phase consists of learning dense

compressions of the input-output pairs. Traditionally, this was considered time for the models

to ”random walk” through the hyperplane to find better generalizations and global minimums.

Tishby’s work provides and answer to this intuition. His results point towards information

becoming tightly compressed leading to improved generalization. Together these processes

define the findings of Tishby’s work demonstrating the internal dynamics of DNNs as a

process of information maximizing I(T ;Y ) measures while minimizing I(T ;X) subject to a

Lagrange multiplier to balance these two competing processes. Fundamentally, the design of

neural networks allow them to distinguish and separate the relevant information from the

irrelevant noise.

The information bottleneck method demonstrates that neural networks, given enough time,

will learn to extract significant relevant information from the input to identify the target output.

It follows a natural information bound guided by DPI 11, where the output information can

not exceed the input information. Fundamentally, these bounds describe the theoretical optimal

limit for information extraction and, rather surprisingly, neural networks appear to follow this

bound exactly. These findings have many applications in interpretability, by defining better

model architectures and improving our understanding of model training.

1.7 Recommender Systems

Recommender systems have become an integral part of Web services. Recommender

systems are algorithms which personalize content and serve it to users such that it filters

content to maximize user engagement. This content can include things such as advertisements

for products or for entertainment. Recommender systems serve many purposes including

keeping users on a Web platform, but are primarily seeking to maximize generated profits by
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serving content a user may not have otherwise found. As the Web ecosystem continues to

expand relevant content becomes increasingly difficult for users to find. Moreover, large

corporations rely on on these systems in order to optimize the generation of revenue, increase

users engagement, and improve users experience. In some instances, the recommender

algorithms used are directly tied to potential profits and thus improvements to these systems

are of utmost importance.

Traditional approaches to recommender systems included searches, but have been replaced

by machine learning algorithms which learn to serve content to users based on a variety of

known factors regarding the user. These factors are aggregated in the form of data and can

include information regarding a users past behavior, demographic data, and much more.

Evidently, the collection and aggregation of user data has become a common occurrence

throughout Web services to improve recommender model accuracy. These prior concepts are

known as knowledge based systems. However, other variations exists known as collaborative

filtering and content-based filtering. Collaborative filtering assumes that similar users share

similar tastes while content-based filtering relies on the past behaviour of a user to infer their

future behavior. These approaches all tend to suffer from data sparsity, meaning that there is a

lack of user data. A lack of user data may be defined either by informational sparsity on a

per-user basis or as an aggregate of users.

As user and item diversity increase, it becomes increasingly difficult to model user-item

preferences due to the increasing aspects of data sparsity and potential biases which may arise.

In this thesis we explore the utilization of generative modeling techniques in order to generate

novel data to help augment or fully replace preexisting data sets used to train recommender

models.

1.8 Score Functions

Selecting the proper objective function for machine learning algorithms is an important

task. Objective functions fundamentally determine the desired optimization goal by allow the
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model to minimize or maximize what is often the difference between generated predictions

and observed data. Score functions are one form of objective functions. They evaluate and

assign a variable with a numerical value which can be used as a metric for optimization. This

numerical value is determined by the gradient of a log probability density function which

defines a true gradient plane of the training data. The intuition is that by optimizing the score,

or steepest ascent on the gradient plane, we can generate an unbiased value that guide a model

towards desirable loss by minimizing the expected squared error. To iteratively improve a

model score functions minimize loss by updating the model parameters given the models

gradient plane leading to this unbiased representation. Importantly, this inevitably requires the

ground truth data in order to train a score-based model properly.

Various challenges arise when utilizing a score function over an objective function. As

previously mentioned, one must have the ground truth data. Often score functions are not

differentiable or smooth. This makes gradient-based optimization techniques challenging to

apply to score functions. Similarly, score functions may not produce desirable results since

one can not necessarily control the gradient plane and the trajectory of optimization. Score

functions also require significant hyperparameter tuning to control the complex space of the

gradient plane. Despite this various score functions have been proposed including denoising

score matching.

1
2
Eqσ (x̃|x)pdata(x)

[
∥sθ (x̃)−∇x̃ logqσ (x̃|x)∥2] , (27)

In this instance of denoising score matching, the function described considers a joint

density for qσ (x̃|x). The idea of desnoising score matching is to add various perturbations to

the data itself so that a robust generalization of the non-differentiable and non-smooth gradient

plane can be learned. Score matching can fail when data is sparse or ground truth data is

unavailable. For now, it is only important to consider that score functions, like score matching,
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utilize the probability density function of the training data and evaluate the likelihood of

observing the data given probability distribution as shown below.

Ep(x)[||sθ −∇ log p(x)||2] (28)
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2 BACKGROUND

2.1 Deep Unsupervised Learning Using Non-equilibrium Thermodynamics

DPMs are a class of energy based models first introduced by [1]. Their approach was

inspired by statistical physics through a forward process to destroy the structure of a data

distribution, then utilizing a multi-layered perceptron a model learns the reverse process.

While the approach to corrupt an arbitrary distribution towards another is not new [33],

Sohl-Dickstein leverages Langevin dynamics to show that any forward process must have an

approximate reverse process. This simple probabilistic model design enables tractability and

flexibility with exact sampling processes.

2.1.1 Forward Process

The forward process is a Markov chain that algorithmically corrupts training data

distribution q(X) towards a Gaussian distribution, where each data point is defined by q(x).

This perturbation of x provides expressive decoding. Originally, the algorithmic corruption

processes is a deterministic process characterized by a linearlly increasing distortion rate of β ,

which defines the schedule for added noise, over T timesteps. The longer the timesteps, the

smaller the β value can be. As β becomes smaller, only a single sample from q(xt |x0) is

necessary to corrupt the data for training.

Here π refers to the final trajectory taken starting from the initial input and ending in

Gaussian noise. Notably, although the forward process is algorithmic, the bit-flipping

probabilities for data is determined for a binomial distribution.

q(xt |xt−1) = Tπ (xt |xt−1;βt) (29)

Since this algorithmic corruption is deterministic, many ideas from statistical mechanics

can be applied to analyze and improve the process. The forward diffusion trajectory created

through Eq. 29 is then defined as:
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q(x0:T ) = q(x0)
T

∏
t=1

q(xt |xt−1) (30)

The authors take some liberties with setting the initial conditions as an identity covariance

matrix to define the data with a variance = 1. This form encapsulates the information of the

data into a vector space that is useful for corruption and reconstruction.

2.1.2 Reverse Process

For every process, there must exist an approximate inverse process [34]. The reverse

process, p(x), for diffusion models employs a neural network to learn to denoise the corrupted

data from the forward process. Effectively the neural network is tasked with learning to undo

the noise added in the forward process through stochastic sampling.

p(x0:T ) = p(xT )
T

∏
t=1

p(xt−1|xt) (31)

Eq. 31 is composed of the corrupted data from a forward pass of T timesteps. This data is

approximately Gaussian making the process of learning to denoise simpler and encourages the

generation of synthetic data which is perceptually similar to the initial training data

distribution. During this learning, only the mean µθ (xt , t) and covariance σθ (xt , t) is needed

for an approximate estimation of the Gaussian distribution. The papers authors recognize that

direct probability modeling fails to provide a tractable model. As a result a solution requires

the use of derivative evaluation metrics in the form of location in µθ and information densities

σθ . Using Bayes theorem, we can derive a model capable of reconstruction by relative

probabilities averaged over T timesteps in the forward process.

p(x0) =
∫

dx(1:T )q
(
x(1:T )|x0

)
· p(xT )

T

∏
t=1

p(xt−1|xt)

q(xt |xt−1)
(32)
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This alternative heuristic presents a novel and important breakthrough in modeling and

generating complex distributions. Additionally, these algorithms only incur the computational

cost associated with running the functions for T timesteps, giving them strong scaling

capabilities.

2.1.3 Training

DPM can be trained by maximization of the log-likelihood. DPM relies on bounding the

traversable search space of data trajectories by some objective in order to produce higher

quality reconstructions. The authors demonstrate a theoretical upper and lower bound. The

lower bound of the model log-likelihood is directly related to Jensen’s inequality. Jensen’s

inequality refers to the fact that convex functions, like that of logarithms, the expectation of

the function applied to a random variable is greater than or equal to the function applied to the

expectation of the random variable. This allows for deriving the lower bounds L for the

expected log-likelihood of the data. Through tightening these bounds, one can optimize these

models with their diffusion trajectories; subsequently being defined by their MSE differences

along the KL divergence over T timesteps:

L≥ K

K =−
T

∑
t=2

∫
dx0dxt q(x0,xt) ·DKL

(
q(xt−1|xt ,x0)

∥∥ p(xt−1|xt)
)

+Hq (XT |X0)−Hq (X1|X0)−Hp (XT )

(33)

As described in [1], ”The derivation of this bound parallels the derivation of the

log-likelihood bound in variational Bayesian methods”. The lower bound approximates the

entropic details of the data distribution as derived by the KL divergence. These bounds

culminate in controlling the DNN’s ability to learn the inverse forward process to an arbitrary

accuracy as seen in the principle of L≥ K. Ultimately, these probability estimators are

”...reduced to the task of performing regression on the functions...” [1].
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2.1.4 Neural Network Architecture

In DPM, the neural architecture, as shown in Fig. 2, consists of a convolutional neural

network which has data points defined by their temporally dependant prediction mean

µi = (xi− zµ

i )(1−Σii)+ zµ

i and covariance Σii = σ(zΣ
i +σ−1(βt)) for each pixel i. The act of

generating a vector representation for each pixel is computationally intensive and difficult. The

authors thus turn to multi-scale convolution down-sampling the data then up-sampling the data

to retain compute resources, while also managing long term dependencies incurred by the

system dynamics. Both the temporal and convolutional dependencies allow the model to learn

denoising. Temporal information helps the model learn the series of diffusion denoising by

providing noisy data with its associated timesteps. Similarly, when handling image data,

convolutions can help model the spatial aspects of the data.

Fig. 2. This neural network architecture is defined in DPM [1].
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2.2 Denoising Diffusion Probabilistic Models

Diffusion models have rapidly risen in popularity thanks to a series of papers culminating

in DDPMs [7]. Diffusion modeling has been shown to surpass SOTA results from GANs on

image synthesis [35], but has significant drawbacks including its sampling efficiency and

computational costs. DDPMs are a tighter optimization of DPM. Like DPM, DDPMs consists

of an iterative training and sampling process defined by its ability to algorithmically add and

probabilistically remove noise.

The architecture of diffusion models follow a simple recipe defined by the interconnected

nature of statistical mechanisms. The six main components responsible for their success are

the denoising neural network εθ , the forward process q(x1:T |x0), the reverse process p(xT ), the

noise scheduler β , the timesteps T , and the objective function. The denoising neural network

seeks to minimize the difference between the noise and expected reconstruction of the data.

The forward process gradually corrupts the input data towards a Gaussian normal distribution

through an algorithmic scheduling process defined by the noise scheduler. The reverse process

then utilizes a denoising neural network to learn how to denoise the latent variable xt from the

forward process into a reconstruction. Finally, the objective function effectively minimizes the

difference between the latents in the reverse processes and the expected noise at a given

timestep. DPMs abstractly learn to synthesize a reconstruction of the input data from a model

tasked with learning the inverse trajectory of the forward process, by focusing on denoising

the corrupted latent, rather than generating a novel one.

2.2.1 Forward Process

Fig. 3 defines the forward process where noise is incrementally added to corrupt input data.

Starting from input data x0, we gradually add noise such that xt has a quantifiable change in

noise from xt−1. Once reaching xT , the distribution of pixels across the image can be thought

of as approximately Gaussian defined by xT ∼N (0,I).
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Fig. 3. The forward process for denoising diffusion probabilistic. Over a series of discrete
timesteps, a predetermined noise quantity will be added to the distribution. This will teach
a denoising neural network to reduce the errors incurred in modeling complex distributions.
Figure from [7].

The forward process is mathematically defined through a closed form nearly identical to

the scheme shown in Eq. 30, where we can define the posterior probability from input data x0

to noise xT in a tractable manner.

q(x1:T |x0) :=
T

∏
t=1

q(xt |xt−1) (34)

Subsequently, we can define the diffusion process by the following terms. The forward

process determines the next state of the corrupted image by T and β . Following a normal

distribution N the data point xt is defined by the location of noise at a timestep µt and the

information density of Σt .

q(xt |xt−1) := N
(

xt ; µt =
√

1−βtxt−1,Σt = βtI
)

(35)

Originally, DDPMs assumed a Gaussian distribution in order to apply methods of variance

control through the scheduling process. High dimensional data, such as training inputs, can be

understood as complex probability distribution. As we traverse the forward process, we

transform the complex probability distributions which define the initial input towards a

significantly more trivial Gaussian distribution. This approximate Gaussian contains

imperceptible differences from a standard Gaussian distribution which contains information

regarding the initial input. These differences are essentially a trace of compressed information
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relating the final Gaussian distribution to the original input. In other words, as the latent is

transformed the information is also transforming as a function of SNR.

2.2.2 Reverse Process

Fig. 4 demonstrates the regenerative theory of the reverse process. Information regarding

the initial distribution is hidden within the imperceptible bits of the corrupted data. The

reverse process learns to extract those hidden variables and propagate their signal in a tractable

way towards a novel reconstruction.

Fig. 4. The reverse process for DDPMs. The goal of the reverse process is to learn to reverse
the forward diffusion process. This effectively allows a model to generate new synthetic data
which resembles the training data. Figure from [7].

The Markov chain of the reverse process also parameterizes a neural network with the

ability to learn to synthesize accurate image reconstructions such that p(xT ) = N (xT ;0,I).

pθ (x0:T ) := p(xT )
T

∏
t=1

pθ (xt−1|xt) (36)

pθ (xt−1|xt) := N (xt−1; µθ (xt , t),Σθ (xt , t)) (37)

µθ (xt , t) =
1
√

αt

(
xt−

βt√
1− ᾱt

ε(xt , t)
)

(38)

DDPMs utilizes the models predicted mean µθ and covariance Σθ of the data distribution

to predict the denoising process. In 38, µθ must predict 1√
αt

(
xt− βt√

1−ᾱt
ε

)
which is a

parameterization defined on the same principles of the forward process. βt (also known as
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1−αt) and Σθ (xt , t) are subsequently constrained to being time dependent constants. This

decision leads the authors to focus on µθ which, through reparameterization, simplifies their

implementation to predict a “learned gradient of the data density” [7].

In subsequent studies, researchers have found µθ to be overwhelmingly influential in the

reconstruction capabilities of the model. The exceptional influence of µθ asserts that knowing

the mean is far more valuable than knowing Σθ .

2.2.3 Training

DDPM follows a series of steps beginning with input data x0 and defining 0≤ t ≤ T

timesteps. The uniform selection of t timesteps provides the reverse process with a robust

training space to learn from. However, during training it is only necessary to generate a single

data point containing the expected noise of a random t timestep. Despite this random selection,

by randomly selecting t ∈ T we are still able to denoise over the entire T . Fig. 5 demonstrates

this algorithmic training process.

Fig. 5. DDPM training algorithm. Figure from [7].

2.2.4 Sampling

The sampling process, as shown in Fig. 6, is key to extract relevant information from the

corrupted input by teaching a DNN to learn the process of denoising through iterative

sampling. The sampling process amounts to the iterative denoising of xt−1 towards a
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reconstruction of the data given the timestep. xT ∼ N(0,I) defines the corrupted Gaussian

input. z defines the Gaussian latent variables from xT−1, ...,x1.

Fig. 6. DDPM sampling algorithm. Figure from [7].

Here xt−1 is defined by a few key components, comprised of 1−αt√
1−ᾱt

which is the scaled

noise adjustments for the reverse process. Similarly, 1/
√

at defines the scale of the noise. Both

of these help to control the SNR during sampling. Given the current timestep xt and the

models predicted noise εθ (xt , t), we can iteratively denoise towards a reconstruction on x̂0.

2.2.5 Negative Log-Likelihood

Recently, the consensus has shifted to redefine diffusion as a class of latent variables

models where the latent variables are exactly the same dimensions as the input data [7].

Diffusion models can capture temporal aspects of the data as they are designed to apply a

series of small perturbations to the input without a reduction in representation. As a form of

latent variables models, similar to VAEs, researchers impose techniques traditionally used in

VAEs in DPMs. Particularly, they introduce the NLL to assess the differences between the

noise distribution and the target data distribution 39.

L := E[− log pθ (x0)]+Eq

[
− log

pθ (x0:T )

q(x1:T |x0)

]
= Eq

[
− log p(xT )−∑

t≥1
log

pθ (xt−1|xt)

q(xt |xt−1)

]
(39)
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This equation converts KL divergence into an objective to be minimized. Minimizing the

KL divergence maintains the models ability to generate highly varied samples based on the

training distribution.

2.2.6 Lower Bounds

A variational perspective on DDPM [36] focuses on measuring the VLB of the

information curve. DDPM presents an approximation of this using a loss function defined as L

and defines of Lt−1 and LT respectively, as the distributions between two Gaussian’s. The

stochastic gradient process can be coupled with sampling from Langevin dynamics, due to the

noise incurred by βt over a sequence of timesteps. The scheduled addition of variational noise

is a critical component of DDPMs as it ensures a model can learn the theoretical reverse

process defined by a natural denoising function. This iterative introduction of noise presents an

opportunity to measure information through the following loss terms.

LVLB := L0 +L1 + ...+LT−1 +LT

L0 :=− log pθ (x0|x1)

Lt−1 := DKL(q(xt−1|xt ,x0) ∥ pθ (xt−1|xt))

LT := DKL(q(xT |x0) ∥ p(xT ))

(40)

In the final iteration, DDPM aims to maximize the probability the model generates a

strong sample x̂0 from − log pθ (x0|x1). This is done because minimizing NLL is equivalent to

maximizing accuracy. These steps ensure DDPM has a strong Langevin sampling from xt to

xt+1 or xt−1 respectively.

Lsimple = Et,x0,ε [||ε− εθ (xt,t)||2] (41)

The authors focus on Σθ as the driving influence for sampling quality. They utilize Lsimple

which results in Σθ (xt , t) not having much influence on the denoising process. The choice to
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train on Lsimple and optimize for Σθ ultimately hindered the performance of DDPM. The

researchers optimize the objective loss function to predict ε and optimize on 41 rather than

LVLB for simplicity. However, more recent research has pointed to µ(xt , t) having more

influence on controlling generation.

2.2.7 Neural Network Architecture

The neural architecture employed by DDPM follows an upgraded DPM architecture. The

key is the introduction of a powerful neural network designed for bio-medical image

segmentation called U-Net [37], see Fig. 7.

Fig. 7. This is the original U-Net architecture for bio-medical image segmentation. The key
design choices to be aware of lie in the continual down-sampling, then up-sampling with
the introduction of skip connections. In DDPM’s version of a U-Net, they utilize these ideas
coupled with the addition of self-attention. Ablations are also made to the convolutional
count, weight normalization is substituted with group normalization, and the introduction of
a Transformer sinusoidal position embedding for each residual block in attention they use.
Figure from [37].
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By utilizing self-attention in the residual block, the model learns what spatial sections of

the data input have relevance in the final output. The sinusoidal position embedding provides

the network with temporal understanding of how noise levels are defined at some t timestep

and helps extrapolate to sequence lengths longer than the ones encountered in training.

Recently, the academic community has viewed positional embedding as hindrance more so

than a benefit.

2.2.8 Discussion

Equation 35 illustrates the proposed scheduled variance, βt , which can be refined to ensure

the expressiveness of the reverse process. This guarantee generates high fidelity and highly

accurate reconstructions. This scheduled variance is essentially additive noise defined the

underlying covariance matrix. This fixed inferencing process, coupled with powerful latent

variable models, can handle arbitrarily many dimensions as an input. The approximately

isotropic Gaussian distribution is defined by Σ = σ2I where the covariance matrix is a scalar

multiple of the identity matrix. This entails that a distribution has the same variance or

standard deviation βt across all trajectories without maintaining correlations between any pair

of dimensions as implied by the diagonal matrix.

The importance of the noise scheduling process can not be overstated [38]. It is

responsible for the success of the reverse process in extracting relevant information from the

algorithmic scheduled noise βt . β controls the corruption process which becomes equivalent to

controlling variance. The noise scheduler linearly scales between β1 = 0.0001 and βT = 0.02.

βt and is purposely kept small to control the SNR of inputs xt , but has the nice property of

scaling well with images of larger dimensions. DDPM arbitrarily sets T = 1000 diffusion

steps because it was enough to synthesize good image reconstructions. The excessive length of

T allows the model time to learn how to reconstruct the input. Setting T = 1000 timesteps is

addressed later in 3 to be an arbitrary bottleneck decision which only requires increased

computation to reach arbitrary degrees of perceptible loss. However, T is also very important
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as a measure of information loss when coupled with β . Diffusion models offer a level of

control in data transformations while maintaining accurate reconstructions which were

previously unseen in any other denoising model.

DDPMs represent a compelling and controllable approach to generative modeling,

leveraging the intricate connections between noise scheduling, the forward process, and

reverse process. Noise scheduling, a pivotal aspect of DDPMs, determines the gradual infusion

of Gaussian noise into the input data towards a corrupted state. The neural network learns to

approximate the reverse process defined by the noise scheduler and subsequently to denoise

the data at each timestep through a Markov chain. This attempts to find an inverse function to

accurately reverse the forward process. Ultimately, the success of DDPMs rely on their ability

to synthesize realistic reconstructions of the input data such they are indistinguishable from

the ground truth.

Since I began writing this body of work, significant breakthroughs have been made to

improve this generation process including, single shot generation, controlability of generated

images, and more. Diffusion models offer the unique ability to control data transformations

and has resulted in a wide variety of models capable of SOTA results across many domains.

The results of DDPM have inspired further research into expanding diffusion models to be

capable of generating various data forms. To include a small fraction of their capabilities,

diffusion models can generate images [39], [40], [41], audio [42], [43], [44], video [45], [46],

and various other data types [47], [48]. Diffusion models have also sparked a new class of

multi-modal models which allow for switching between increasingly impressive modalities

such as text-to-image [49], [50], [51], and image-to-video [52], and text-to-video [53], [54]

among others.

These works exhibit only a small fraction of the recent advances in diffusion based data

generation. The unprecedented abilities of diffusion models have resulted in immense strides
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across various domains presenting some of the most influential and promising work in AI to

date.

2.3 Mutual Information Neural Estimation

MINE is a technique which leverages neural networks to approximate MI. Measuring MI

has traditionally been a intractable problem. Through the universal approximation

theorem [55], MINE seeks to abstract this approximate calculation of MI to become the

responsibility of a neural network to measure. Unlike critic model architectures, MINE does

not suffer from intractability because it uses the gradient plane to determine MI rather than the

data distribution itself. This design has allowed MINE to retain linear scaling properties

despite arbitrary dimensionality and sample size while simultaneously guaranteeing

consistency. This process ensures an expressive approximation of MI while maintaining a

controllable degree of accuracy. Using KL divergence we can define MI as the joint

probability distribution and the product of the marginals.

I(X ;Z) = DKL(PXZ∥PX ⊗PZ) (42)

This derivation is intrinsically expressive and a fundamental feature of all generative

modeling. Importantly, KL divergence has many different useful mathematical expressions

which ultimately allow for tightening the lower bound of information variation. The key

ingredient in MINE is the estimation of the lower bound as defined by:

̂I(X ;Z)n = sup
θ∈Θ

E
P(n)XZ

[Tθ ]− log(E
P(n)X ×P̂

(n)
Z
[eTθ ]) (43)

Here, I(X ;Z) denotes tracking the information change between timesteps. This equation

derives the expected values from PXZ and PX ⊗PZ . The pair of variables in PXZ is sampled

simultaneously with PZ as a marginal probability distribution. The marginal PZ also protects

the representation and maximizes MI for complex feature extraction. This maximization
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becomes increasingly useful as dimensionality of the input is scaled. Synchronized sampling

guides the gradient descent process to a minimum and maintains consistency across all

features and dimensions.

Through their experiments, researchers discovered that maximizing MI also has the

unintended effect of minimizing the expected reconstruction error leading to drastic model

improvements. They suspect this is possible due to the marginal of PZ describing a latent

representation of the input data. These representations capture the intricate details of the data

distribution and aids in tightening the lower bound by minimizing the conditional entropy

shared between latent variables. As highlighted in previous sections, building a tractable

estimator for a VLB requires additional information that is often unknown to the model.

MINE’s reliance on the gradient plane avoids tractability becoming an issue, as seen in other

models, making it a strong contender to measure MI.

The authors propose a competitive model capable of achieving strong results when

compared to other bi-directional adversarial models. When comparing MINE results to GAN,

MINE performs consistently better in a wider range of tasks and measurements solely by

maximizing MI. This conclusion establishes MI as an important metric for complex feature

extraction, consistency, and can help improve classification tasks in machine learning

applications. MINE is also both strongly consistent and has great sample complexity making it

a great ingredient for improving any deep learning task. Furthermore, the researchers apply

MINE to the information bottleneck principle in continuous settings, leading to superior

results when compared to other bi-directional Markovian methods confirming MINE’s

capabilities and MI’s general importance as a information theoretic tool.

2.3.1 Information Bottleneck and Diffusion

As discussed in 1.6, the layers of a neural network naturally follow the DPI 11 curve. It

gradually learns to maximize relevant MI as the information passes through successively

deeper layers. The DNN learns to extract information from the signals. At this step we inject a
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measurement tool to quantify the transformation of information from input representations to

an output representation. As these MI representations become stronger, the model begins to

seek a better compressed representations and the retention of relevant information.

Tishby’s information bottleneck framework presents a methodology to understand DNNs

as relevant information maximizing processes. Recall that mutually shared information can

also be defined as entropy, or uncertainty. DDPMs utilize a denoising neural network that

learns to predict denoising information from the Guassian input. This lay’s bear a crucial

component of the theory of information processing through neural networks and diffusion

processes. Fundamentally, diffusion and DNNs both rely on the extraction of relevant features

by learning to remove noise. Despite the similarity, denoising networks elevate the internal

process of DNNs to be the explicit objective. In many ways, we may consider DDPM an

explicit representation of the internal dynamics of DNNs. This makes DDPM an enticing

avenue to explore the information processing capabilities of DNNs through MI significantly

easier and defines the problem space in terms of DPMs.

Similar to neural network layers, diffusion seeks to incrementally transform input data

towards an output, while maintaining the same principles from the information bottleneck.

Diffusion models target this specific balancing process of learning to retain only relevant

information for the reconstruction of the initial inputs. This perfect match of denoising an

input lends itself naturally to the information bottleneck principle and the changing dynamics

of MI in DNNs. The denoising network effectively takes the processes seen internally in each

DNN layer and makes it the objective of the whole network. Diffusion models offer a new tool

that parallels the changes of MI through DNNs making it an appropriate mechanism to

understand the inner workings of DNNs.
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3 PRIOR WORK

For decades diffusion models have seen many use cases and studies across various

scientific disciplines. Recently, these use cases have expanded to probabilistic modeling in

computational sciences. Compared to other generative model types, diffusion leverages

thermodynamics to model complex data distributions with ease. Unfortunately, all generative

modeling techniques, including diffusion models, seems to suffer from trade-offs incurred by

sample quality, fast sampling, and diversity of generation. In the following section we discuss

a small fraction of the works which have been shown to improve, apply, and redefine DDPMs

towards optimality without compromising on these trade-offs.

3.1 Ablation Studies to Diffusion Models

3.1.1 Improved Denoising Diffusion Probabilistic Models

IDDPM [56] is one of the first attempted ablation studies conducted on DDPM. The

researchers ablate various DDPM techniques to improve sample efficiency and demonstrate

the potential for industrial scaling. Even minor architecture changes achieve efficient sampling

while improving log-likelihoods. Furthermore, they provide significant insight into DDPMs

establishing them as an enticing class of generative models.

Diffusion models are notorious for having poor sample efficiency when compared to other

log-likelihood models. The log-likelihood significantly contributes to learning desirable

feature representations [57] making its optimization an important factor. One method to

advance sampling has promoted reducing the VLB, otherwise known as the ELBO. The

researchers report that tightening the variance effectively reduces the search space required

during sampling leading to better approximations. Through this, IDDPM significantly lowers

the required timesteps from 1000 to 50 while maintaining equivalent sampling quality [56].

Through this, they present a novel approach to track the variance of the noise schedule over an

arbitrary sequence S within T diffusion steps. However, as a consequence, the uniform

sampling of data causes an infusion of unwanted noise which is addressed through importance
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sampling. We defining the sequence of importance sampling here, utilizing ᾱt to represent the

noise schedule and ᾱSt to denote the equivalent sequence.

βSt = 1− ᾱST

ᾱSt−1

, β̃St =
1− ᾱSt−1

1− ᾱSt

βSt (44)

Sampling variance can be used to scale the data automatically to lessen the necessary steps

for T in the forward pass. This is possible because Σθ (xSt ,St) is bounded between the ranges

βSt and β̃St . “We can thus compute p(xSt−1|xSt ) as N (µθ (xSt ,St), Σθ (xSt ,St))” [56]. In

contrast to the fixed constants βt featured in DDPM, IDDPMs learned variance of noise

produces robust, high quality models while reducing computational inefficiencies.

In order to combat poor sample quality, it was generally understood that one must increase

T to an arbitrarily large number. The gradual addition of noise through the forward process,

and its subsequent removal in the reverse process, was fundamental to ensure the neural

network learns to properly denoise the input data. It stands then, that by increasing the total

timesteps used in each pass provides the denoising DNN more time to learn the proper

denoising function as each discrete timestep is responsible for a smaller portion of the total

additive noise. The researchers study this effect, by setting T = 4000, instead of the proposed

T = 1000. This change marginally improves FID scores and significantly increasing the

computational costs. As T becomes larger the model learns to approximate imperceptibly finer

denoising details, making T a desirable hyperparamter to improve image quality. They go on

to prove their sampling and training ablations successful. They present that minimizing T

diffusion steps to 100 produces similar quality images across various image sizes such as

64×64 and 32×32.

The lengthened diffusion process utilizes a longer βt to reconstruct a finer β̃t . This change

improves the learned variance of the reverse process and provides a theoretical foundation for

the role of the changing information through additive noise. The essence of the statement is

that with a decrease in the timestep size, there’s an increase in the granularity of additive noise
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encountered at each step, which in turn elevates the variance of noise and diminishes the

structural information accessible to the model at every timestep. Fig. 8 demonstrates the

perceptibly loss in terms of bits per timestep through the VLB objective.

Fig. 8. Bit capture as a function of diffusion steps. Figure from [56].

Consequently, this perceptibility gain demonstrates that the model mean µθ (xt , t) has

much more influence in determining the final output distribution than Σθ (xt , t). [7] sets

Σθ (xt , t) = σ2
t I where σt is not learned by the model. Since the goal is to minimize the

log-likelihood we consider the VLB, importantly within the context of T . IDDPM illustrates

the decision to fix σ2
t as a detriment, since most of the perceptible bits are denoised within the

first few hundred steps of DDPM. A few opportunities exist to overcome this inefficiency.

Namely, in directly predicting Σθ (xt , t), or the information density, to guide the denoising

model. Unfortunately, this approach would be computationally intensive leading to the

alternative of parameterizing variance between βt and β̃t such that

Σθ (xt , t) = exp(ν logβt +(1−ν log β̃t)). They subsequently indicate that this approach allows

for a simplified objective function such that Σθ (xt , t) can guide the objective while allowing

granting µθ (xt , t) to remain overwhelmingly influential. This solves many of the prior

difficulties encountered in such as the influence of Σθ and diffusion’s sampling efficiency 2.2.
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In the following subsections 1.4.1, 3.3.2, we will discuss the theoretical foundations of the

proposed improvements from this section, derived chiefly from diffusion experiments and

cross-pollination from other various domains.

3.1.2 Non-Gaussian Denoising Diffusion Models

Non-Gaussian diffusion offers another ablation point of diffusion models. DPMs, such as

DDPM, have traditionally used Gaussian distributions as their main distribution fitting goal

with the desire to obtain N (0,I). DDPMs noise scheduler follows a set of parameters defined

by the variance of noise added at each timestep denoted by 35. As a result, the authors

investigate alternative distributions and study their effects on model capabilities. They study

Gaussian, Gamma, and a mixture of these distributions.

Gamma distributions differ from Gaussian distributions through a few key points. While

both are continuous distributions, Gamma distributions are comprised of only positive real

numbers from 0≤ x≤ ∞, which can be contrasted with Gaussian’s bound between

−∞≤ x≤ ∞. The Gamma distribution is also considerably more flexible in its distributional

shape. Gamma distributions are highly expressive which make them strong contenders for the

flexible and expressive modeling in DDPMs. With simple changes to DDPMs, one can

substitute Gaussian’s with Gamma distribution such that:

xt =
√

1−βtxt−1 +(gt−E(gt)) (45)

Where gt ∼ Γ(kt ,θt), θt =
√

ᾱtθ0, and kt = βt/αtθ
2
0 . θ0 and βt are hyperparameters

determined by Grid search [58]. Through a close formed solution of Gamma distributions, one

can derive an equation to define xt :

xt =
√

ᾱtx0 +(ḡt− k̄tθt) (46)
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Expanding from the closed form formula, where ḡt ∼ Γ(k̄t ,θt) and k̄t = ∑
t
i=1 ki one can

rewrite the subsequent inferencing process given by the systems Langevin dynamics to

incorporate Gamma distributions:

xt−1 =
xt− 1−αt√

1−αt
εθ (xt , t)

√
ᾱt

+σt
ḡt−E(ḡt)√

V (ḡt)
(47)

Minor adjustments to the training and sampling algorithms are necessary to encourage

stronger model performance. The training algorithm includes changes to derive the appropriate

Gamma parameters, updating xt through eq 46, and updating the gradient descent equation to

account for a new set of parameters. The sampling algorithm is changed so that xt starts the

sampling process, with additional updates to the introduction of noise and the update equation.

The mixture of distributions approach is very similar to the introduction of Gamma

distributions described above. The replacement of the Gaussian with the Gamma distribution

is relatively straightforward, but in mixture distributions the challenge becomes defining the

proper mixture of the two distributions. To do this, the authors ablate 35 to normalize the

probability distribution at a scheduled pace. This process can then be transformed by

introducing C to represent a discrete number of Gaussian variables. This allows for a mixture

of distributions at any timestep.

xt =
√

1−βtxt−1 +
√

βt

(
C

∑
i=0

ziε
i
t

)
(48)

Here, we define C as the number of Gaussian variables used while pi is the probability that

zi = 1 for the ith Gaussian variable for generation.

The authors experiment using DDPM and DDIM testing for single Gaussian, mixture

Gaussian, and Gamma distributions respectively. They demonstrate that mixture distributions

overwhelmingly provides better FID scores on the CelebA and LSUN datasets. They explain

they were limited in testing other distribution types which may offer improvements or other
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beneficial results. Notably, there are some distributions which are not adequate for diffusion

modeling such as Poisson distributions which are discrete and require independence with

regard to time since the last event. Overall, [59] offers another point of improvements for

diffusion models and importantly substantiates the versatility of parameters which can be

ablated. The authors provide extensive theoretical proofs and have empirical evidence to

corroborate their claims.

3.2 Advancements in Sample Efficient Diffusion

3.2.1 Denoising Diffusion Implicit Models

DDIMs are a generalization of DDPMs to a class of non-Markovian processes that are

deterministic and subsequently sample efficient with the trade-off of sample quality. They

target the DDPM objective through a core property of diffusion where the objective ”depends

on marginals of q(xt |x0), but not directly on the joint [distribution] q(x1:T |x0)” [60]. In this

sense utilizing a deterministic or implicit model can result in sampling improvements

anywhere from 10× to 100×. Importantly, these improvements add only a negligible

deterioration in sample quality compared to setting T = 1000, while utilizing the same

objective function found in DDPM.

When given the same high dimensional data, DDIMs provide consistent latent variable

representations resulting in stable high-level feature generation, as opposed to their

non-Markovian counterparts. This asserts direct controllability of image synthesis through the

latent space.

Fig. 9 illustrates the forward process where each xt may depend on either X0 or xt−1.

Accounting for the marginals to be conditionally guided by x0 for regeneration. This forward

process is defined for any real vector in σ ∈ RT
≥0.

qσ (x1:T |x0) = qσ (xT |x0)
T

∏
t=2

qσ (xt−1|xt ,x0) (49)
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Fig. 9. Non-Markovian inference model proposed in DDIMs. Figure from [60].

This method abstracts DDPM granting dependency on both x0 and xt−1 while σ controls

the stochasticity of the forward process, leading to a fixed xt−1. As a consequence of removing

the Markovian nature of diffusion, it is necessary to update the reverse process. Through θ ,

the variational inference objective produces results which appear to require different models

for every σ , more on this in 3.3.2. Notably, these proposed ablations illuminate the objective

function in DDPM to be equivalent to DDIM’s derived objective. Furthermore, this notion

extends the information transformation properties of diffusion to non-Markovian spaces and

demonstrates a general principle outside of Markovian inferencing and generative processes

presented in DDPM.

In the subsequent reverse process, they define pθ (x0:T ) such that each p(t)
θ
(xt−1|xt) uses

the knowledge of qσ (xt−1|xt ,x0) intrinsically. With this in mind and a fixed prior denoted by

εt ∼N (0,I) the reverse process can be written as the function:

f (t)
θ
(xt) :=

(xt−
√

1−αt · ε(t)θ
(xt))√

αt
(50)

This necessitates a sampling process over pθ (x1:T ) such that xt−1 is dependent on xt and

conditional to x0. The sampling process below demonstrates how one can define diffusion’s

reverse process, in a non-Markovian case, as the sum of:

xt−1 =
√

αt−1

(
xt−
√

1−αt−1ε
(t)
θ
(xt)√

αt

)
+

√
1−αt−1−σ2

t · ε
(t)
θ

+σtεt (51)
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They optimize θ over a variational inference objective, seen below, which allows them to

reuse DDPMs model training objective.

Jσ (εθ ) : = Ex0:T∼qσ (x0:T ) [logqσ (x1:T |x0)− log pθ (x0:T )]

= Ex0:T∼qσ (x0:T )

[
logqσ (xT |x0)+

T

∑
t=2

logqσ (xt−1|xt ,x0)

−
T

∑
t=1

log p(t)
θ
(xt−1|xt)− log pθ (xT )

] (52)

Since the reverse process is equivalent to learning the inverse of the forward process, they

define the latent variables x1:T as a subset which matches the marginals. For further efficiency,

rather than applying incremental denoising at each timestep as DDPM does, DDIM attempts

to reduce total noise at every step towards x0. The experiments described outperform DDPM

even when using the same hyperparameters and models. However, the authors note that

differences in results reside in how samples are gathered. DDIM produces faster and more

consistent results when comparing high-level feature generation and sampling. Moreover, the

overwhelming information changes between x0 and xt can be captured in fewer steps with only

a minor loss to quality.

3.2.2 Consistency Models

Consistency models were inspired by the continuous time SDE diffusion models seen in

3.3.2) [29]. They follow the same abstract forward, reverse, and denoising techniques from

DDPM, but they extend the frontier significantly, by solving many of the fundamental issues

associated with generative modeling including sample efficiency. The authors present how

diffusion contains SDE dynamics lead by a drift and diffusion coefficient. These coefficients

relate DPMs to a specific probability flow ODE. Given this specific probability flow ODE, one

can integrate a consistency function on f : (xt , t) = xε such that the outputs of DDPM are

consistent across the same probability flow ODEs.
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To parameterize this, consistency models utilize skip connections defined by the following

function:

fθ (x, t) = cskip(t)x+ cout(t)Fθ (x, t), (53)

where ”cskip and cout are differentiable functions such that cskip(θ) = 1 and cout(θ) = 0 ...

are differentiable at t = ε if Fθ (x, t),cskip(t),cout(t) are all differentiable” [40]. Through this

differentiability, consistency models only require a single pass to generate samples. This

comes at the cost of a necessary constraint where the consistency function

f (xε ,ε) = xε , i.e., f (·,ε) is an identity function.

Models which utilize these probability flow dynamics attempt to regenerate something

similar to the input data by mapping trajectories to outputs. One possible way to follow this, is

to develop a model for each timestep of noise addition, but this approach is infeasible let along

computationally intensive; Unless you can one-step generation. Thanks to the Probability Flow

ODE, generated data can be mapped to its input data. This creates parings and highly efficient

sampling procedures which sample from the transition density of the SDE N (x, t2
n+1I). In

sampling, the goal is to attempt to iteratively denoise. Unlike DDPM, one cares about the

trajectory taken. In this regard, the consistency model typically introduces a consistency loss

54 which discourages the model for predictions other than what would be consistent over

given timesteps.

LCT (θ ,θ
′) = Eλ (tn)[d( fθ (x+ tn+1z, tn+1), fθ ′(x+ tnz, tn))] (54)

Through minimizing the differences associated with each pair of series data points xtn and

xtn+1 consistency models learn to quickly solve probability flow ODE. This, in essence,

becomes a goal to enforce the self-consistency property of DDPMs. In this regard, each
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input-output pair should be very similar, but generation in DDPM is not necessarily exact or

even class consistent.

Through consistency models, additional properties of DPMs arise. One example, which is

supremely relevant to the body of this work, is that of the ability to utilize transfer learning in

diffusion. Ultimately, these training decisions ensure consistency models are capable of

one-step or few-step generation.

3.3 Unifying Diffusion Models: Variational Bounds, I-MMSE, and SDEs

3.3.1 Variational Diffusion Models

In a paper titled Variational Diffusion Models [36], researchers achieve competitive

log-likelihood scores while also enhancing the VLB through a tractable estimator,

demonstrating that this bound can be significantly tightened by formulating an objective in

terms of its SNR. Through this notion, they show ”...continuous-time VLBs are invariant to

the noise schedule, except for the SNR at its endpoints” [36]. This alone defines a pivotal

moment in understanding diffusion processes as it is unlike any other previously proposed

objective ablation. They go on to demonstrate this change leads to efficient optimization of the

noise schedule by directly minimizing the variance of the VLB estimator and show lossless

compression rates which achieve a theoretical optimum. They optimize parameters using the

traditional VLB of the marginal likelihood given by (26).

The forward process is primarily defined by their SNR function. Here SNR is described to

be strictly monotonically decreasing through time, a property consistent with the DPI defined

in 11. They define this function to be SNR(t) = α2
t /σ2

t . When SNR is sufficiently small, x0 is

approximately Gaussian, while a high SNR denotes a close approximation to q(x|z0). The

noise schedule is derived from a corresponding function that employs a fixed schedule,

formulated as σ2
t = sigmoid(γη(t)). Here γη(t) defines a monotonic neural network. Due to

assumptions that α and σ are differentiable, it becomes trivial to convert DDPM’s reverse

process to continuous time.
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p(x) =
∫

z
p(z1)p(x|z0)

T

∏
i=1

p(z(i−1)/T |z(i/T )) (55)

Continuous time necessitates that T −→ ∞ which effectively amounts to diffusion loss

coinciding with the integral of the MSE over SNR. Through a series of simplifications and

replacements T can be defined to follow SNR−1(ν). In this context, the loss function is

constrained between SNR limits, such that as T trends towards infinity, only the maximum and

minimum values of SNR stay relevant. In doing so, the diffusion loss becomes invariant of the

SNR function between SNRmin and SNRmax except w.r.t the VLB and its endpoints.

L∞(x) =
1
2
Eε∼N (0,I)

∫ SNRmax

SNRmin

||x− x̃θ (zν ,ν)||22dv (56)

The shift to a continuous time framework, paired with an SNR noise methodology,

provides SOTA results across all evaluations, both in metrics and datasets. The researchers

highlight key characteristics of diffusion involving the denoising sequence as a process

dependent on the SNR. This objective changed and proposed methodology provides a variance

minimization technique to tighten the VLB.

Variational diffusion models can also be defined by MMSE which are related to the lower

bound on log-likelihood. MMSE is related to the VLB by the reparameterization trick, which

allows gradients to be computed with parameters. In diffusion the variational inferencing

allows for MMSE to minimize MSE, which effectively minimizes KL divergence between

ground truth and variational distributions.

3.3.2 Score-Based Modeling through Stochastic Differential Equations

In an important extension to Variational Diffusion Models 3.3.1, a score-based generative

modeling approach has lead to the relation of diffusion processes to SDE through:

dxt = µ(xt , t)dt +σ(t)dwt (57)
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Researchers utilize this SDE approach to smoothly transform complex data from a known

prior and the learn time reversal. The approach abstracts DDPM even further than [60] by

using a continuous distribution to interpolate over timesteps. Through this abstraction,

researchers were able to flexibly control the generation of data by conditioning on information

that was unknown during inferencing. Remarkably, the reverse-time SDE can be denoted by

the following equation:

dx =
(

f (x, t)−g(t)2
∇x log pt(x)

)
dt +g(t)dW (58)

In this context W denotes a standard Wiener process, under Brownian motion, that starts

from T and ends in 0, while dt stands for a small finite timestep. The score of a distribution

may be estimated through a score-based modeling approach during training where the

continuous time generalization necessitates the following function:

θ
∗ = arg min

θ

Et

{
λ (t)Ex(0)Ex(t)|x(0)

[
∥sθ (x(t), t)−∇x(t) log p0t(x(t)|x(0))∥2

2

]}
(59)

The researchers note that with a sufficient amount of data and sufficient model capacity,

this score matching approach ensures that the optimal solution is reached, denoted by the

function sθ (x, t). Where each point accurately captures the data density ∇x log pt(x) for nearly

all instances of x and t. Typically, the transition kernel p0t(x(t)|x(0)) is necessary for efficient

computation, however they bypass this requirement by replacing the denoising score matching

with sliced score matching such that Eq.59 becomes:

θ
∗ = arg min

θ

Et

{
λ (t)Ex(0)Ex(t)Ev∼pv

[1
2
∥sθ (x(t), t)∥2

2 +vT sθ (x(t), t)v
]}

(60)
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Additionally, utilizing a score-based modeling approach to solve a reverse-time SDE the

researchers reinterpret the diffusion process to a deterministic one defined by marginal

probabilities for an ODE:

dx =
[

f (x, t)− 1
2

g(t)2
∇x log pt(x)

]
dt (61)

In many instances, ODE’s may be considered a deterministic limit of an SDE where the

average dynamics of the SDE can be described as a trajectory of an ODE. Within probability

density estimation for p(x, t) the ordinary differential equation corresponding to an averaged

SDE becomes a deterministic sampler which gives exact solutions to the likelihood of any

input data. This exactness allows for the reverse process to be uniquely associated with an

input such that the trajectory is always equal from noise to data. This also introduces both

privacy concerns, as training data may be reproduced through sampling. Significant

improvements to sampling quality can also be realized through larger error tolerance.

Furthermore, through the encoding process on x0 and decoding process through the proper

ordinary differential equation channel, these latent representations become flexible

abstractions which may be molded for image manipulation techniques.

3.3.3 Information-Theoretic Diffusion

Recently, [11] demonstrated core relationships to the foundations of this thesis relating MI

with MMSE which they call I-MMSE. ”We [the authors] generalize the I-MMSE relations to

exactly relate the data distribution to an optimal denoising regression problem, leading to an

elegant refinement of existing diffusion bounds” [11]. This relationship also exposes

fundamental ideas related to probability distribution estimation. Previously, [61], proposed a

fundamental connection between input-output pairs of MI and MMSE which states that SNR

is equal to half the MMSE for any optimal estimation.
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As the authors point out, variational diffusion models 3.3.1 demonstrate that diffusion

models are defined by MMSE on the lower bound on the log-likelihood because MMSE

minimizes KL divergence.

From these intuitions the authors present a fundamental relationship of denoising by

MMSE and KL Divergence:

d
dSNR

DKL[p(zy|x)∥p(zy)] =
1
2

MMSE(x,SNR). (62)

The marginal is defined by p(zy) =
∫

p(zy|x)p(x)dx and MMSE is a pointwise estimation:

MMSE(x,SNR)≡ Ep(x|zy)[∥x− x̂∗(zy,SNR)∥2]. (63)

Through thermodynamic integration [62], they demonstrate an expansion to Eq. 62:

− log p(x)≤ DKL[p(zSNR1|x)∥p(zSNR1)]

+Ep(zSNR0 |x)
[− log p(x|zSNR0)]

− 1
2

∫ SNR0

SNR1

MMSE(x,SNR)dSNR

(64)

”... where evaluation of the endpoints corresponds to a difference in the free energy or log

partition function, and the derivatives of these quantities may be more amenable to Monte

Carlo simulation” [11]. Through strong applications of thermodynamic integration, the authors

demonstrate an expansion to continuous time integration where SNR ∈ [0,∞). Here the

variational bounds in diffusion are determined by SNR samples from α ∼ q(α). The

log-likelihood can be exactly defined by a simplified Gaussian density function which is the

global optimum of denoising MSE, which can be rewritten as a regression problem.

h(p)≡ Ep(x)[− log p(x)] =
d
2

log(2πe)− 1
2

∫
∞

0
dSNR

(
d

1+SNR
−MMSE(x,SNR)

)
(65)
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Through these generalizations, an exact relationship between data probability and data

distribution is related to the optimal denoiser Eq. 63 and show regression is a fundamental

estimator for probability densities such as DPMs.

3.4 Diffusion Model Applications

3.4.1 Image Super-Resolution via Iterative Refinement

In one of the earliest applications of DDPM, Image Super-Resolution via Iterative

Refinement [25] up-scales images through an unconditional diffusion model. The paper

demonstrates the potential to upscale images by 8×, from 16×16 - > 128×128. Crucially,

this diffusion model is trained to reproduce high resolution images through a stochastic

iterative refinement defined as pθ (yt−1|yt ,x), where x and y are pairs of images representing

an input of lower dimensionality and output of higher dimensionality respectively.

The forward process is defined as:

pθ (y0:T |x) = p(yT )
T

∏
t=1

pθ (yt−1|yt ,x)

p(yT ) = N (yT |0,I)

pθ (yt−1|yt ,x) = N (yt−1|µθ (x,yt ,γt ,σ
2
t I)

(66)

The inference process pθ (yt−1|yt ,x) is learned and its reverse process becomes an

approximate Gaussian. When given an image from an arbitrary timestep, y0 can be

approximated through:

ŷ0 =
1
√

γt
(yt−

√
1− γt t (x,yt ,γt)) (67)

ŷ0 defines the variance of the forward process and can be repurposed to approximate the

reverse process into the posterior distribution. Similarly to DDPM [7], the authors use an

equivalent inference training process, but replace the posterior distribution with a new
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description to find yt−1 as seen in Eq. 68. The models trajectory is effectively guided to

reconstruct the image while retaining high-level features.

ŷt−1←
1
√

αt

(
yt−

1−αt√
1− γt

fθ (x,yt ,γt)

)
+
√

1−αtεt (68)

Previous attempts at increasing image fidelity have utilized bicubic and regression systems

with various degrees of accuracy. Diffusion models provide an unprecedented level of image

reconstruction on imperceptible details that, when zoomed in, demonstrate significant fidelity

improvements. Despite this, Super-Resolution via iterative refinement suffers from multiple

issues including biases such as dropping finer facial details. Super-Resolution also provides

near equivalent results on PSNR and the structural similarity index measure, but significantly

improves on previous FID scores.

The importance and non-trivial nature of ensuring consistency to represent high level

features is crucial to upscaling images. As a result, utilizing consistency models, as proposed

in [40], may yield better reconstructions. Super-Resolution via iterative refinement utilizes the

strengths of diffusion modeling by harnessing its ability to augment and reconstruct data

towards a the desired distribution.

3.4.2 Residual Diffusion Based Compression

Using the generative capabilities of diffusion models, [63] developed a lossy neural codec

used for rate-distortion interpolation during test time called DIRAC. Typical codecs often

suffer from a trade-off between perceptual quality and fidelity, however neural codecs suffer

from the triple trade-off of rate-distortion-perception. DIRAC solves this through a dynamic

neural codec, capable of dynamic rate control at inference time and has the added bonus of

being integratable alongside other codecs. They go on to demonstrate that with a reduced

representation of data, they can sample with significantly reduced step counts.

Consider a noisy channel 1.1.6 where data is compressed before entering the channel and

decoded after leaving the channel. It is computationally efficient to reduce the data sizes
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before transmitting data through a channel. Conversely more compressed the representation is,

the more perceptual loss accrues. DIRAC solves this by utilizing a dynamic rate-controller.

DIRAC utilizes a DDIM [60] and a novel residual method proposed by [64] where the

conditional probability of p(x0|X̃) is replaced by p(r0|X̃) where r0 = x− X̃ . Notably DIRAC

avoids using JPEG as the default to restore reconstructions because the JPEG reconstructions

are lossy. When mixed with less desirable forms of reconstruction such as PSNR. This can

result in worse reconstructions. Instead, DIRAC uses LPIPS [65] and FID [66] to evaluate any

perceptible distortions. These notions effectively allow the development of a new loss term

where r′0 defines the model output from the residual at a given timestep. Wt defines a

weighting factor to help small or large t.

L (x, x̃) = Et,rt [wt ||(r0− r′0)||2 +λLPIPSdLPIPS(x, x̃+ r′0)] (69)

Through their experiments researchers demonstrate DIRAC as a competitive model when

compared on PSNR, despite being trained on LPIPS. This approach allows for users to control

rate, distortion, and perception at test time. Many other approaches to improve compression

have been developed from GAN based architectures [67], to diffusion ones [68], [69], but

DIRAC is the first to leverage dynamic reconstruction between fidelity and perception quality.

3.4.3 MINDE: Mutual Information Neural Diffusion Estimation

In MINDE an explicit, tractable estimator for MI is presented. Utilizing score-based

diffusion models [29] to estimate KL divergence as the difference between two score

functions. Finding the exact score function is not necessarily tractable, but through by

parameterization θ they can derive a score network based on minimizing the loss 70 found in

prior work [29], [70], [36].

L(θ) = EPµ

[∫ T

0

g2
t

2

∥∥∥s̃µ

t (Xt)−∇ log
(

ν̄
δx0
t (Xt)

)∥∥∥2
dt
]
, (70)

56



Following this, the researchers demonstrate that encoder and decoder functions, as seen in

VAEs and diffusion, the KL divergence can be computed in the latent space. This approach

derives neither upper nor lower bounds of the true KL divergence, but does allow a tractable

estimator for the forward process. In the reverse process however, the authors utilize Monte

Carlo integration because ”... analytic computation ... is in general, out of reach” [71].

Contrarily, in this work, we will demonstrate an accurate estimator of MI capable of

performing in the forward and reverse process.

To calculate the MI between two random variables A,B the researchers must define the

marginals µA,µB respectively, joint µC = (C = [A,B]), and conditional (A|B) = µAy and

(B|A) = µBx measures. µC and µAy values are then introduced into the score-based diffusion

process. This sets the foundation of a novel diffusion model which can model the joint and

conditional measures according to the following SDE:

{
d
[
Xt ,Yt

]⊤
= ft [aXt ,βYt ]

⊤ dt +gt [adWt ,βdW ′t ]
⊤ ,

[X0,Y0]
⊤ ∼ µC,

(71)

The key intuition for this SDE is that only a single score network is necessary as it blends

the formulation in 71. To calculate MI in their joint diffusion model they utilize the equation

H(C)−H(A|B)−H(B|A) and derive a new loss function to predict I(A,B).

I(A,B)≃ EPµc

[∫ T

0

g2
t

2

[∥∥∥∥s̃µC

t ([Xt ,Yt ])− [s̃µ
AY0

t (Xt), s̃
µ

BX0
t (Yt)]

∥∥∥∥2
]

dt

]
(72)

3.4.4 Imitating Human Behaviour with Diffusion Models

The authors of this work propose using diffusion models to imitate ”...human behaviour,

since they learn an expressive distribution over the joint action space” [27]. They incorporate

reinforcement learning into their diffusion model to manage diverse trajectories which may not

be captureable using standard diffusion practices. This is possible because diffusion models
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are capable of learning complex state-action relationships. This lead to improved accuracy on

common RL control tasks from prior SOTA results of 44% to 89%.

Using DDPM as a foundation, Pearce et al explores the use different neural network

architectures including the transformer and CFG. CFG is a neural network trained for both

conditional and unconditional modeling, but fundamentally one which balances a trade-off

between data consistency and data diversity. To allow DDPM based models to learn diverse

state actions spaces, like that in imitating human behavior, they ablate the predicted noise and

variance scheduler to account for these spaces. Using human training data as a foundation,

they define the distribution D as D ∼ o,a, and set τ ∼ Uniform[1,T ]. Their predicted noise

follows the following equations which seeks to minimize a variation of MSE loss given an

observation/state o and an action a.

LDDPM = Eo,a,τ,z[||ε(o,aτ ,τ)− z||22] (73)

At sampling time, they redefine the variance scheduler to account for states and actions:

aτ−1 =
1
√

ατ

(
aτ −

1−ατ√
1− āτ

ε(o,aτ ,τ)

)
+στz (74)

After ”baking-in” these ingredients, the CFG becomes defined by its weighted guidance

metric w which gives more weight to the conditional variable prediction ”cond.” when w > 0

and results in higher values of p(o|a). This approach also gives a negative weight on the

unconditional prediction ”uncond.” . as defined by:

ẑτ = (1+w)εcond.(aτ−1,o,τ)−wεuncond.(aτ−1,τ) (75)

From these ideas, they test different diffusion methods they define as Diffusion-X and

Diffusion-KDE. These diffusion methods differ only in the sampling methodology where the

researchers suspect that encouraging higher-likelihood actions during sampling will lead to

58



faster modeling. Diffusion-X is defined by continuing additional denoising over M timesteps

after the traditional sampling is complete. This likely leads to higher-likelihoods. [27] also

proposes Diffusion-KDE which utilizes a KDE to score and extract the highest likelihood over

all samples. These ablations result in improvements to out-of-distribution actions and result in

better performance in complex environments.

The researchers mix transformer and MLP architectures with their ablated diffusion

methods to produce SOTA results. Interestingly, they analyze the CFG and its bias w.r.t

distributions. They find that CFG creates a bias towards following unconventional trajectories,

but almost always solves the human evaluation task. Conversely, in the absence of CFG they

find that their approach is only able to complete tasks 63% of the time.

Notably, they train their model to play videos games. Using a dataset of human actions

from the popular game ”CS:GO”, they are able to produce a SOTA model achieving 24 points

out of the human baseline of 36. Prior competitive models achieved a score of 18 points. They

test performance by placing an agent in a fixed position and giving it the goal defending itself

against all approaching enemies.

In conclusion, the researchers demonstrate the capability of their model in imitating

human behaviors successfully. They demonstrate diffusion to be an ideal match for learning

observation-to-action distributions. Using a mix of diffusion ablations and avoiding coarse

gradients by increasing likelihood-estimations they achieve SOTA results in a range of

complex tasks.

3.5 Insights on the Transformation of Information in DDPMs

3.5.1 Deep Neural Networks

DNN’s have been widely accepted to be ”black boxes” due to the youth of the field.

Fundamentally, DNN’s represent a simplified and digitized version of the neural circuitry in a

human brain. For humans, data is first captured by our senses then propagated by signals and

path ways to the brain. In the brain, these sense representations are passed through a series of
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neuron chains where the action potential determines if the signal will continue to propagate

and to which neurons this signal will propagate to. Over time, neurons which are used often

are reinforced while neurons that are unused deteriorate. This neural plasticity helps our brains

learn to represent and act on the world around us.

In a computational neuron, data x is compiled and ingested by the network through input

neurons. These neurons go one to propagate their signal to the next neuron layer, known as the

hidden layer. Neurons contain a weight w associated with the connections between neurons

which signifies its influence. This is multiplied by the sum of observation data signals on x and

a bias b to adjust. Once this weighted sum is calculated, an activation function will be applied.

The activation function will convert the input signal to an output signal. These signals are

compared with a threshold set by an activation function then propagated. In the final output

layer, the representations of signals will collapse the prior layer’s output signal to a predicted

representation denoted by ŷ. A cost function then evaluates ŷ based on a reward metric to the

expected data y. This final reward determines the models predictive accuracy. To induce

learning and improve prediction accuracy, backpropagation is employed to send update signals

through the DNN in reverse. These signals update the weights and biases of each neuron in the

DNN.

While the complexity of DNN types are vast, fundamentally they take an input and

propagate signals of that input to produce an output representation. The neuron count per layer

and even the number of hidden layers are conceptually arbitrary since only three hidden layers

are necessary to approximate any function [55]. Although it must be noted that networks with

more layers and tailored neuron counts tend to learn better representations and improved

accuracy’s when compared to smaller networks.

We can study DNNs by considering them as layer-wise Markov chains defined by MDPs.

Each neuron layer acts as a decision making process. MDPs are defined by states, actions,

probabilities, and rewards. In this context, the state defines the output signal from a prior layer,

60



the action is the transformation applied by the layer over all its neurons, the probability is the

stochastic signal propagation, and the reward is the correctness of the final output ŷ. MDPs

provide a way to study DNNs through the lens of information theory, ultimately providing

mechanistic interpretability of DNN model dynamics.

Various attempts have been made to explore the information processing capabilities of

DNNs. [72] demonstrated that DNNs can be quantified by the MI between layers. They show

with training, feature representations become increasingly compressed towards the bounds of

minimally sufficient statistics 1.1.5, effectively mapping the input variables into a

representation which preserves the maximal amount of information for exact reconstruction on

a lower-dimensional plane for the output y. MDPs follow DPI such that deeper DNN layers

will have access to less information than earlier layers. One way to imagine this is that as x

passes through each hidden DNN layer, the relevant feature representations from x are

decoupled from unintended observation noise. We can define this relevant feature information

as a function of SNR, or by the MI through the assumption of statistical dependence between

x and y. MI can effectively be bound by the prediction error. Maximizing MI for DNNs is a

natural optimization goal as the more information that is shared between the input data x0 and

output prediction ŷ, the stronger the prediction will be.

[30] extends the work proposed in [72] to further study the effects of training on DNNs.

They show two phases of SGD known as drift and diffusion. In the first phases known as drift,

MI between the input x and output y is rapidly increased over a few hundred training epochs.

Here the average gradient fluctuation purports high SNR. This phase controls the rapid

reduction in the prediction error from the cost function. Once sufficiently trained to maximize

MI extraction, the SGD will naturally attempt to compress the representations in the second,

far longer diffusion phase, which leads to low SNR. The diffusion phase here represents the

distribution of x as being maximized by its entropy weight distribution based on the training

error, or as a minimization of MI. The diffusion phase can also be represented by the
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Fokker-Planck equation, which describes the temporal evolution of a representative probability

density function as the ”speed” of data transformations while bound by random forces. This

illuminates a deeper connection between diffusion processes and DNN mechanics, as DPMs

are guided by the Fokker-Planck for score-matching functions [73].

During training, DNNs learn to extract relevant features which contribute to reducing the

prediction error. This amounts to optimizing SNR. DNNs can then be interpreted as a

denoising process. Interestingly, data augmentation techniques to introduce noise to the input

data during training results in robust models due to learning better signal representations to

circumvent noise. Ablating various other points including layer count, neuron count, training

times, and objective functions can also lead to improved model prediction accuracy.

3.5.2 DDPMs, DNNs, and Information

DDPMs and DNNs share many conceptual commonalities. Both systems are defined by

MDPs, where DNNs pertain to layer count and DDPMs pertain to timesteps. Where DNNs

intrinsically maximize MI between input-output pairs through maximizing SNR at each layer,

denoising networks explicitly learn to extract signals from a noisy latent in the reverse process.

DDPMs and DNNs also share the same types of objective functions. Functions like L2 loss

consist of the squared error L2 = (Y − Ŷ )2 and MSE MSE = 1
n ∑

n
i=1(Yi− Ŷi)

2 are commonly

used as objectives in both systems. However, these objectives often fail to capture granular

data intricacies. While DDPMs utilize a denoising U-Net, the similarities go beyond a

simplistic look at DNNs. Many of the same concepts from the prior section 3.5.1 are

applicable to DDPMs including maximization of SNR and MI, and MDP chains. DNNs have

been shown to be equivalent to Gaussian processes when network width is infinitely wide [74].

The authors express that this allows neural networks to be trained for regression objectives.

DDPMs, also consist of Gaussian processes. [11] has shown that DDPMs can be characterized

and defined by regression objectives with continuous and discrete probabilities [11], This
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connection illuminates a broader correlation between DNNs and DDPMs which escape the

scope of this work, but set contextual understanding for the following sections.

DDPMS and DNNs also have distinctive properties. DDPMs are AWGN channels 14

which explicitly and incrementally add noise according to a variance scheduler β . This

deterministically transforms the latent variables true and expected SNR through time.

Learning these SNR expectations in the reverse process amounts to learning denoising. DNNs

do not add noise, but instead only focus on this reverse process to separate signals from noise.

Data augmentation techniques to introduce noise of varying levels to data effectively does the

same process, but learns a single representation instead of the chained representation present

in DDPMs. However, DDPMs also utilize a similar technique where data can be

algorithmically corrupted to any t ∈ T then used to train the reverse process, making denoising

agnostic to timesteps. While DNNs are intrinsic SNR maximizers, DDPMs utilize

hyperparameters to achieve the same goal. We can thus study the effects of these

hyperparameters on information processing. This provides an opportunity to explore various

information-theoretic properties entropy, MI, information bounds, and opens various directions

of research to optimize and apply diffusion.

For the remainder of this work, and particularly this section, we explore diffusion through

the lens of incremental channels as shown in [61]. Guo et al. lays much of the foundational

theory behind diffusion models through AWGN channels. Their key contribution is the

fundamental relations between MI, optimal MMSE, and SNR through incremental channels.

The relation between DNNs and DDPMs are thus characterized by these connections. We

define these connections explicitly in the following paragraphs.

Developing these information-theoretic principles, we can explore the forward process of

diffusion in a deterministic setting and simultaneously ground the reverse process in the same

principles. The fundamental difference between the forward and reverse are the algorithmic

corruption and the stochastic denoising done by a neural network. Guo et al. [61] eloquently
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defines the following equations where we assume X to be input data, Y is a single channel, N

is an independent Gaussian random variable, σ is the addition of noise, δ defines the total

timesteps, and are represented by the i-th timestep in the sequence. Each channel can be

defined by its input data and added noise.

Y1 = X +σ1N1,

Y2 = Y1 +σ2N2,

(76)

Since this is clearly a Markov chain where X → Y1→ Y2, we can apply the chain rule of

MI which states that successive chains of independent processes can be reduced to the sum of

conditional MI terms for I(X ;Y1|Y2) in the following:

I(X ;Y1) =
T

∑
i=0

I(X ;Yi|Yi+1) (77)

As the SNR increases through each independent incremental channel, Eq. 77 redefines Eq.

76 as (SNR+δ )Y1 = SNRY2 +δX +
√

δN . Where the SNR is the primary difference over

time. Through this process [61] shows that conditional MI can be expressed as half the

expected value of the squared different between X and its conditional state given the

incremental Gaussian channel of Y2 with the added noise o(δ ).

I(X ;Y1|Y2) =
δ

2
E
{
(X−E

{
X |Y2

}
)2}+o(δ ) (78)

As the number of successive channels increase, Eq. 78 and Eq. 77 show that as δ → ∞

SNR channels with low information signals correspond to MMSE multiplied by additive SNR

leading to:

I(SNR) =
1
2

∫ SNR

0
MMSE(γ)dγ (79)
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This result applies to successive Gaussian channels and can be studied from the

score-based SDE interpretation of DDPMs 3.3.2. However, the seminal results of Guo’s paper

abstract this notion by demonstrating a fundamental relationship 80 of MI being the

accumulation of MMSE as a function of SNR. Where ”...the derivative of the mutual

information (nats) with respect to the signal-to-noise ratio (SNR) is equal to half the MMSE,

regardless of input statistics” [61].

d
dSNR

I(SNR) =
1
2

MMSE(SNR) (80)

This demonstrates MI and optimal estimation of MMSE in Gaussian channels are

connected. Through increasing MI, the SNR must increase according to half of MMSE. [11]

introduced the application and connection of DDPMs to Guo’s theoretical work and arrived at

the results we illustrate above. The researchers demonstrated the same intimate connection

between DDPMs, MI, and MMSE in Gaussian channels. In summary, MI, MMSE, and SNR

are deeply related to SDEs like DDPMs, and increasing the MI should also increase the

MMSE leading to improved model capabilities and providing an information-theoretic

approach to studying these systems.

3.5.3 Information in DDPMs

The incremental MDP nature of DDPMs provides a natural point to sample from. In the

reverse process the denoising procedure is determined by a few key DDPM components;

Namely the number of T timesteps, the noise scheduler β , and the objective function. Recall

that [7] uses a linear scheduler β from 0.0001 to 0.02, sets timesteps to 1000. The noise

perturbations are added according to βt . Through this incremental noise, a gradual decay in

information takes place within the input data. The minuscule and uniform additions of noise

provides many benefits. Recall 1.1.1, uniform distributions maximize differential entropy and

makes them robust to small noise perturbations like the ones set by the linear scheduler.
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Maximizing differential entropy amounts to finding the maximum uncertainty in a probability

density function. Information is destroyed uniformly, resulting better estimation of the

probability density function like DDPM.

Consider input data in the form of a two-dimensional image. One can describe the input

data as a complex probability density function. As noise is added, the rich information of the

probability density function is gradually replaced by Gaussian noise. Over T steps, these

additive noise perturbations sum to an approximately Gaussian distribution. The approximate

nature of xT contains information in the random perturbations when compared to a perfectly

Gaussian distribution. A well trained neural network can take these small differences in

distributions through KL divergence and extrapolate this information back into the input data.

In practice however, many variables can influence this exact regeneration process. The most

important hyperparameter is T , followed by β , then the objective function. The larger T is, the

finer the information addition. While the smaller T is, the more noise is added.

Simultaneously, β and T are intimately connected where β bounds the added information

between two points and T divides the information increments uniformly. With sufficient added

noise, the data can be rapidly corrupted leading to a loss of the initial information signal. The

denoising U-Net in DDPM is tasked with predicting noise at a given timestep, but this is

subject to the chosen objective function which may also be inefficient at capturing small

differences in the distributions. The neural network may also fall victim to hallucinating

information from other classes, and cause regeneration of another class or a degenerate output.

However, in generative modeling, it is often the case that desired reconstructions are novel

samples, not reconstructions from the training data.

Contrasting VAEs with DDPMs provides theoretical insights into generative models and

information processing. Where VAEs are hierarchical, DDPMs are global information

estimators because the latent dimensions are equivalent throughout training. Diffusion focuses

on learning the information representations from the features sampled at every xt . This
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information is dependent on that tight coupling between T and βt . When T is sufficiently

small DDPM enables exact reconstructions of x0, subject to the minimally sufficient statistics

1.1.5 for reconstruction being present in the latent. As T is increased, the reconstructions begin

to degrade such that they generate alternative classes from the training distribution. This

discrepancy shows there are training dynamics responsible for class dependency and

reconstruction consistency. There must then exist a T and βt that produces the minimally

sufficient statistics to accurately reconstruct x0 from xT . Consider the optimal diffusion time to

be a product of T ∈ 0→ ∞. Assuming a sufficiently large T, there must exist a time which

optimally maximizes the difference between the KL terms of the ELBO. Training for an

infinite diffusion time, as assumed in score-based diffusion models, does not maximize the

ELBO [75].

As described in prior the sections 1.3.2 and 2.2.6. The ELBO quantifies the lower bound

of the quantified log-likelihood of the input data. By optimizing this lower bound one can

effectively utilize the ELBO as a proxy optimization objective for rich feature representation

and better generative modeling. The ELBO is strictly non-negative following KL-divergence.

This is because we want to match the variational posterior of q(z|x) where z is the latent

variable, and the true posterior given by p(z|x) through minimization of the KL divergence.

Since we do not have access to the true posterior distribution, we instead seek to maximizing

the ELBO as it becomes an equivalent minimization of KL divergence. This fundamentally

relates the ELBO to the optimal objective function.

Significant research has been conducted on continuous time diffusion models and

optimization of the ELBO [36] and [76]. They demonstrated better reconstructions capabilities

by maximizing the lower bounds. In particular, one work has explored an interesting

relationship between the ELBO and the SNR of a given timestep. The authors of [77] posit

that the optimal ELBO objective should evolve with each timestep given the changes to the

SNR of the latent variables. With each xt there is an expressive ELBO for that SNR. The

67



optimal DDPM objective must then be the sum of weighted SNR integrals over the ELBO.

Meaning that, from this perspective, prior objective functions were not expressive enough to

capture the intricacies of the data input. Without additive noise perturbations DDPM

approaches the ELBO depending on the objective function being used. Improving on this,

DPPMs can directly match the ELBO when subject to monotonic weighting. Interestingly, in

the foundational DDPM paper [7] they derive MSE as the optimal objective for diffusion, but

utilize mean absolute error in training their implementation.

By chaining the sum of weighted integrals we can get an exact ELBO calculation for

DPMs. This ELBO, a product of the interplay between likelihood estimation, AWGN, and

MDP, provides a way to quantify the transformation of information in diffusion at any given

timestep. The lower bound signifies the minimal information of the system. Utilizing the

notion of minimally sufficient statistics for exact reconstructions and likelihood training for

the ELBO, one can study the effects of ablations to T and β through the MI and MMSE

connection presented by Guo et al. [61] and derived by [11]. Reconstructions are still subject

to the objective function. The objective function may or may not the capture expressive

distributions diffusion is trained on, but the better the function the better the informational

capture.

Various attempts have been made to explore the information processing capabilities of

DNNs. [72] demonstrated that DNNs can be quantified by the MI between layers. They show

with training, feature representations become increasingly compressed towards the bounds of

minimally sufficient statistics 1.1.5, effectively mapping the input variables into a

representation which preserves the maximal amount of information for exact reconstruction on

a lower-dimensional plane for the output y. MDPs follow DPI such that deeper DNN layers

will have access to less information than earlier layers. One way to imagine this is that as x

passes through each hidden DNN layer, the relevant feature representations from x are

decoupled from unintended observation noise. We can define this relevant feature information
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as a function of SNR, or by the MI through the assumption of statistical dependence between

x and y. MI can effectively be bound by the prediction error. Maximizing MI for DNNs is a

natural optimization goal as the more information that is shared between the input data x0 and

output prediction ŷ, the stronger the prediction will be.
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4 CASE STUDY I: INFORMATION-IMBALANCED DATA SETS

Given our prior discussion of DDPMs as a form of AWGN channels 1.1.6 characterized by

the ELBO 1.3.2, we seek to explore the effects of ablating various parameters inherent to the

introduction and removal of noise, particularly T and β . We study the information theoretic

quantities responsible for the reconstruction capabilities of DDPM through MI and raise

questions regarding the optimal diffusion training procedures. Specifically, we observe an

interesting phenomenon where DDPMs are disproportionately likely to reconstruct particular

classes across training epochs, noise schedulers, timesteps, and datasets. The transformation of

latent variables to noise, over the course of the DDPM process, should result in uniform class

reconstruction when sufficient information is destroyed. Instead, we observe particular classes

to be consistently more likely to be generated despite the fact these latent variables become

noise.

4.1 Experimental Settings and Design

4.1.1 Neural Networks Settings

Our denoising neural network is a U-Net similar to hat proposed in [7]. We define our

model parameters by the following fixed points. Model channels = 32, Residual Blocks = 1,

Dropout = 0, Convolutional Resampling = True, Attention Heads = 2, and FreeU = False.

The remaining model parameters are dynamic and dependant on the complexity of the dataset.

They are comprised on Input/Output Channel, Attention Resolution, Channel Multiplier.

Model channels define the feature maps in the convolution layers and is set to a power of 2

in order to enable smooth down sand up sampling while also maintaining efficiency. Residual

blocks [78] amount to skip connections to transfer high level feature representations to deeper

network levels. Dropout [79] is a regularization technique which focuses on setting individual

random neurons to 0 to stop propagation of signals to deeper layers and encourage robust

feature representations. Here we set it to 0 so the model has full capacity. Convolutional

resampling is a technique which uses strided convolutions for downsampling and transposed
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convolutions for upsampling. Rather than relying pooling techniques convolutional upsampling

introduces dynamic model adaptability for learning the downsampled and upsampled

representations. Attention is part of the transformer architecture [80] and is utilized to ensure

the model can learn spatial relationships well by learning where to focus a models ”attention”

in an image. FreeU [81], although not utilized, was added to the model to improve its semantic

capabilities. FreeU improves model generation because skip connections tend to focus on

passing high-level feature representations through the residual blocks, by reweighing the

contributions by the U-Net skip connections we can develop better semantic representations.

The dynamic model parameters include the input and output channels which signify the

number of channels in the dataset. For example MNIST is gray-scaled and single channel,

while CIFAR10 is RGB with three channels. The attention resolution defines the scale for the

attention heads to operate. We dynamically adjust this depending on the dimensions of the

dataset we train on, where high dimensional data like CELEBA is set to (8,16,32) resolutions

while MNIST and CIFAR10 is set to (8,16) resolutions which define the feature maps of the

attention mechanism. Similarly, channel multiplier is also scaled according the image size of

the data set where MNIST is set to (1,2), CIFAR10 is set to (1,2,4) and CELEBA is set to

(1,2,3,4).

The model parameter choices were determined by hand tuning the model for efficiency

and speed. As previously mentioned, deeper models perform better due to the successive

chaining of layers resulting in better feature extraction. The trade-off is the computational

requirements to train models these models become longer with each additional operation. Each

model is trained on a single NVIDIA 4090 and utilizes a batch size of 512 and the standard

Adam optimizer [82] with a learning rate of 2×10−4 and random perturbations of 1×10−8.

Unfortunately, computational complexity, limited resources, and limited time prevented further

exploration. Despite this, with small changes, our code base can be adapted to test various

other points of interest.
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To estimate MI we utilize MINE. MI, for MNIST data, is calculated to be close to the

information entropy of log210 = 3.32 where 10 defines the number of class labels. We test

MINE against these bounds and find that with additional data augmentation techniques we can

more closely reach the theoretical upper bound of their entropy. This was necessary to be able

to calculate the incremental differences in MI through time. To calculate MI during the DDPM

trajectories, we ablate MINE and stack MNIST training data along the channel dimension.

This effectively multiplies the expected channel count by 2 of our batched input tensor. This

provides a single forward pass through which MINE can calculate the MI of two images at

once.

For RGB and Grey-scaled image data MINE uses a simple CNN from a batch size of 512,

a learning rate of 0.0001, and train for 150,000 epochs. Similarly, we train a Gaussian MINE

implementation through a simple feed forward MLP which dynamically changes dimensions

to fit the Gaussian data dimensions. During training the class label is inserted with the

respective training data and processed in the forward pass. An expected moving average is

used to ensure the model is predicting MI accurately. Despite rapid training, epochs are kept to

150,000 as training longer demonstrated divergent and degenerate model behavior.

4.1.2 DDPM Settings

To explore the information processing capabilities of DDPMs we design and test our own

implementation. Unless otherwise stated, our control parameters follows those set in [7] which

defines timesteps = 1000, linear scheduling = [10−4,0.02], MSE as the objective function,

and use models trained to 1000 epochs. Our implementation leaves significant room for testing

across various datasets, parameters, and model architectures.

We train various DDPMs with different noise schedulers β including sigmoidal, cosine,

and linear. The first two introduce gradual noise at a pace similar to that of the linear scheduler,

but in the final steps of T begin introducing significant noise rapidly effectively transforming

the latent into a Gaussian distribution. The linear scheduler does not introduce significantly
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more noise in the final steps. Given these DDPMs are trained on various noise schedulers we

also train each of them across a range of timesteps consisting of [100, ...,1000] in increments

of 100 steps and train for timesteps beyond 1000 at [1500,2000,3000,4000,5000]. Each of

these models consisting of variations on noise schedulers and timesteps are trained to 1000

epochs with periodic checkpoints at epochs [1,5,10,25,50,100,250,500,750,1000]. In this

way, we can observe the effects of T , β , and epochs on the regenerative capabilities of

diffusion and particularly the evolution of MI through time.

4.1.3 Experimental Design

Through the various models across T and β we generate samples across epochs which

illustrate the input data, the evolution MI over the forward process, the final corrupted data,

the evolution of MI over the reverse process, and the final reconstruction generated. Through

this process, we can explore the effects of these parameter changes through time and training.

Similarly, for each of the potential combinations of T , β , and epochs we generate input

and output pairs of data to compare diffusion reconstructions with their training data inputs. In

other words, for every data input we pass through these various DDPM models, we save the

input and the generated novel sample. We save 4000 input-output pairs for each class label

within the training data, consisting of MNIST and Fashion-MNIST data sets. We utilize our

robust classifier models for each data set and explore the reconstruction accuracy of DDPM in

generating same input class as its output.

4.2 MI Recovery Results

Through our exploration in studying the information processing capabilities of diffusion

processes across a range of ablated parameters, we apply MINE at each timestep in DDPM. In

order to ensure MINE predictions are strong, we average the predicted MI over 5 training runs.

We explored predicting MI for single data points and batched data points. MI predictions for

our work are aggregated in batches of 512 to better model the MI over time.
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In all instances of the following figures: Fig. 10, Fig. 11 we define the axis as such: The

x-axis in the following individual graphs represents the number of timesteps utilized. The

y-axis of the individual plots defines the MI. The plots are also defined by a blue and red lines.

The blue bounds signify the variation in MI prediction of the same batched data that is

processed 5 times. The red line signifies the average of these variations. The figure is then split

into a two by two grid defined by the y-axis which shows the timesteps of the figures within

the rows and the x-axis which shows the epochs by the column.

The bounds of MI remain consistently tight across the forward process. Particularly, as the

timesteps are increased the MI that is removed due to noise at a given timestep is reduced. We

can see this by the differences from the top row, which set timesteps to 100, and the bottom

row, which set timesteps to 1000. In the first moments of these graphs, the information decay

is significantly less for 1000 timesteps due to the spread of removing information increasing.

However, this is to be expected as the forward process is an algorithmic corruption.

In the subsequent reverse process, the predicted MI is significantly different. After

sufficiently training a DDPM model, one would expect to find that the MI removed from the

forward process would be approximately reconstructed in the reverse process. This is exactly

what we find when timesteps are considerable low as the MSS for reconstructions are

recoverable since the latent variable at xT from the forward process is not sufficiently

corrupted to remove information present from the input. We can see that during the first epoch

of training DDPM fails to extract MI. However, through training and when timesteps are low,

the MI extracted increases over the course of the reverse process. When timesteps are

increased the MI extraction is significantly reduced. As we see in the row where timesteps are

1000, the MI is significantly more difficult to recover.

During this training process, by testing various ablations to the DDPM parameter settings

we find that increasing the training epochs increases the MI extracted similar to Tishby’s

findings [30]. MI extraction in this instance is tied both to the noise scheduling process, the
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Fig. 10. As we pass through the forward process noise perturbations are gradually added to the
input data. Within each chart, the y-axis defines the MI, while the x-axis defines the timestep
count. The rows define the timesteps utilized while the columns define the epochs. The forward
process is consistent even across any potential variation in predicted MI and are consistent
across timesteps according to the scheduler.

number of timesteps utilized, and the number of epochs a model is trained for. We illustrate

these findings across a range of timesteps below to better illustrate the effects of timesteps on

MI recovery when the noise scheduler and epochs are consistent.
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Fig. 11. Similar to 10, we utilize the same grid structure and axis, but demonstrate the MI
transformation over the course of the reverse process. We see that as timesteps are increased
the extraction of MI becomes more challenging to recover, even as the model is trained for
1000 epochs.

In the following figures, Fig. 12 and Fig. 13, the sequential images define the input data x0,

MI in the forward process, the corrupted latent xT from the forward process which is then
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passed through the reverse process, the MI in the reverse process, and the generated

reconstruction x̂0.

Fig. 12. As data traverses the DDPM process MI gradually decreases with each timestep in
the forward process. In the reverse process MI is extracted. When timesteps are low the MI
recovery of the latent variable xt increases. As previously demonstrated in 11, as timesteps are
increased MI recovery becomes more difficult.

We observe between 500 and 1000 timesteps, MI recovery fails to become possible.

However, we notice through training various models that when model training is consistently

kept to 1000 epochs, at approximately 600 timesteps we can witness and obvious shift in MI

recovery over the course of training 13. Through training, the MI recovery becomes

increasingly better.

4.3 Information-Imbalanced Data Set Results

The results of the prior section 4.2 demonstrate a propagation of information through

DDPM in the form of improving MI. Given DDPMs information propagation across its

various MDPs and its ability to approximately generate exact reconstructions of input data

when timesteps are low, we explore DDPMs class-based reconstruction accuracy across these

various models with different parameters.
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Fig. 13. We study the effects of training DDPM by sampling the MI at different epochs. We
observe during training between epochs 100 and 1000 the MI becomes recoverable. As we
train the model, the MI extracted from the DDPM latent variables increase.

Recall that information is gradually destroyed as the latent variable is turned into a

corrupted Gaussian data sample. As x0 approaches xT it becomes increasingly Gaussian and

replaces the signals of information with noise. This asserts that recovering the information

which ascribe the information of a particular class should become increasingly difficult to

extract. During reconstruction we would then expect to see that classes are uniformly

generated according to the number of classes in the data set. Particularly, in MNIST and

Fashion-MNIST there are 10 distinct classes. This would lead to the expectation that each

class has a 10% probability of being reconstructed. Instead, we observe that some classes like

label 8 in MNIST are significantly more likely to be reconstructed at a rate of 20%−40%

across timesteps, schedulers, and epochs. We attribute this finding to an information-imbalance

since these data sets contain equal quantities of labelled data for each class to the tune of 6000

samples per label. We demonstrate these observations below.
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For context, a robust classification model was trained on each individual data set. This

classifier then predicts the input data class and the reconstruction data class. From these

predicted classifications, we compare the model predictions with the true labels of the input

and novel samples. We graph the prediction accuracy compared to the true accuracy in the

graphs, where the input data accuracy is displayed in blue and the novel sample data accuracy

is displayed in red. Our results can be seen in Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18, and

Fig. 19.

Fig. 14. The reconstruction accuracy for the MNIST data set on class label 8 with a linear
DDPM noise scheduler and trained for 1000 epochs. After the initial degradation of accuracy
from the increasing noise perturbations added by increasing the timesteps, we find that DDPM
disproportionately generates novel samples for timesteps past 2000.

Fig. 15. The reconstruction accuracy for the MNIST data set on class label 7 with a linear
DDPM noise scheduler and trained for 1000 epochs.

Across epochs, timesteps, and noise schedulers some classes like more likely to be

reconstructed. Fig. 14, Fig. 16, and Fig. 18 all demonstrate imbalanced data reconstructions
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Fig. 16. The reconstruction accuracy for the Fashion-MNIST data set on class number 8 with a
linear DDPM noise scheduler and trained for 1000 epochs.

Fig. 17. The reconstruction accuracy for the Fashion-MNIST data set on class number 9 with a
linear DDPM noise scheduler and trained for 1000 epochs.

which are above the expected accuracy of 10%. Conversely, Fig. 15, Fig. 17, and Fig. 19 all

constitute the expected accuracy. Fig. 16 also exaggerates the notion that different timesteps

Fig. 18. The reconstruction accuracy for the MNIST data set on class label 1 with a linear
DDPM noise scheduler and trained for 10 epochs.
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Fig. 19. The reconstruction accuracy for the MNIST data set on class label 6 with a linear
DDPM noise scheduler and trained for 10 epochs.

effect the generative capabilities of each class differently. Notice that as our prediction

accuracy reduces to a minimum at timestep 2000 the accuracy of predicting class label 8

increases as we utilize more timesteps. This demonstrates that selecting timesteps may have an

effect on what classes are likely to be reconstructed. Additionally, consider that when utilizing

the cosine scheduler a significant amount of noise is added in the final timesteps virtually

replacing the input image with pure noise. Despite this, DDPM continues to reconstruct

particular classes even though the corrupted latent should contain no information about the

input data as shown in Fig. 18 and Fig. 19. Moreover, we observe these phenomenon across

data sets as well since we can illustrate this accuracy imbalance in the Fashion-MNIST data

set as seen in Fig. 16 and Fig. 17. These results are consistent across epochs, timesteps, and

noise schedulers.

4.4 Discussion

We postulate the imbalance in regenerated accuracy as a product of the information from

the input data. Classes with higher information content would likely be harder to destroy,

particularly in regard to the MSS. For this reason we suspect that there are a few ways to

combat this phenomenon. The first we consider is the maximize the entropy of each data point,

or image, in the data set such that all the training data is maximally equal. This would ensure

that the information contained in any one data point would be uniform and thus likely to have
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equal reconstruction potential. Another potential route is to utilize our prior findings regarding

training diffusion models for specific timesteps based on the individual classes. We believe

that some classes will take more or less time to diffuse properly and by training to this points

we can control the class based reconstruction capabilities. The final method we propose would

be to ablate the objective function in such a way that one could guide DDPM towards a

desired class reconstruction. This could potentially be done by utilizing an intermediate

classifier model which penalizes the objective function if the information in the latent data is

not predicted to be the desired class. These potential solutions offer approaches to help guide

the diffusion process towards uniform class reconstructions, but are left as open research

problems to explore.
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5 CASE STUDY II: A NOVEL RECOMMENDER MODULE SCORE FUNCTION

Recommendation systems have become a crucial component of Web systems. In a paper I

helped publish to IEEE Access [83], we introduce a recommender module which utilizes a

score-based DDPM approach to generate novel user-item interactions which can be used to

partially augment or fully synthesize data sets. We call this approach a Score-based Diffusion

Recommender Module (SDRM). SDRM achieves an average boost of 4.3% on partial

augmentation of data sets and 4.6% for fully synthetic data. These boosts consist of training

recommender systems utilizing the data we generated through SDRM. Simultaneously, our

generated data is 99% dissimilar to the training data. This is important because training

recommender models on user data raises many privacy concerns.

In SDRM, my main contribution was a novel score function inspired by denoising score

matching which helps SDRM achieve its state-of-the-art results, surpassing previous attempts

at generating novel user data. In the following section we provide context for the different

components of SDRM and explore the novel score function.

5.1 Background

5.1.1 Variational Autoencoders

VAEs are class of generative models where the input data dimensions changes through

time. A probabilistic encoder compresses the input data x according to the mean and standard

deviation of x into a lower dimensional latent vector. This latent vector is then passed through

a probabilistic decoder which samples from the latent and produces a reconstruction of x′. The

goal of the VAE is to train the encoder and decoder networks in such a way that x′ is a similar

reconstruction of x. VAEs optimize the ELBO which is generally intractable. This normally

requires a variational posterior, but the probabilistic encoder and decoder jointly optimize the

data samples. In effect, the encoder maps to the latent space and the decoder maps from the

latent space. The variation in sampling leads to novel reconstructions or ones which are

similar to the input data. Optimization of VAEs amounts to reducing the reconstruction error
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according the KL divergence. [5] In SDRM, we utilize VAEs as a means of tightly

compressing sparse data entries, thus utilizing their primary components in mapping data to a

lower dimensional latent space.

5.1.2 Recommender Systems

As previously described 1.7, recommender systems are algorithms which filter content to

provide a more personalized experience to users. Machine learning approaches are an ideal

setting for recommender systems since they can search for hidden patterns within user data to

better serve content. Methods like collaborative filtering and content-based filtering have found

significant success. Simpler approaches like user-item interactions can also yield strong

penalization, but have suffered from data sparsity. User-item interactions are large matrices

which consist of data for a single user. The user will interact with particular items which is

transcribed as a data entry within these large item matrices. These matrices are often

incredibly sparse leading to challenges in modeling data. In SDRM, we utilize user-item

interaction data sets and address the challenges posed by data sparsity through the utilization

of generative modeling and training dynamics.

5.1.3 Score Functions

As we previously described in 1.8, score functions are a class of objective functions. Score

matching is a way to approximate the score at a given point on the gradient plane determined

by its steepness, and minimizes the expected squared error of the data. Generative models are

capable of utilizing score-based objectives as an alternative to maximizing the ELBO, and are

particularly useful as an unbiased objective. [29]. However, when data is sparse or ground

truth data is unavailable, score functions like a score matching objective can fail to model data.

In SDRM, we train recommender systems on ground truth data and are able to apply

score-based approaches to training SDRMs architecture due to the nature of recommender

system user-item data.
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5.2 Score-based Diffusion Recommender Module

SDRM is ”... a module designed to generate artificial user-item preferences to augment or

replace the data set it is trained on” [83]. SDRM is a strong application of diffusion models for

the task of modeling complex training data. SDRMs architecture is illustrated in Fig. 20 Often,

user-item preferences are sparse matrices which are difficult to model. Utilizing a VAE

architecture SDRM first compresses these user-item preferences into a lower-dimensional

Gaussian distribution. The encoder network is pretrained to map training data x into a

compressed latent vector z0. This latent is then processed by a score-based diffusion model

utilizing a multi-layer perceptron denoising model. This diffusion reconstruction gradually

corrupts the compressed latent VAE output z0 into a noisy Gaussian sample zT . This sample is

then reconstructed towards a Gaussian distribution modeled by the VAE encoder output ẑ0.

Finally, this novel Gaussian reconstruction is processed by the decoder network back into a

novel reconstruction of the same dimensions as the input to the VAE encoder x̂. Training

diffusion to corrupt a Gaussian sample and reconstruct it into a Gaussian sample allows the

diffusion model to learn finer details of its input. Below we illustrate this module.

Unlike prior approaches [84], [85] which utilize at most 10 timesteps for the diffusion

process, SDRM utilizes up to 200 timesteps to allow diffusion to better learn the underlying

data distribution. We propose two approaches called full-resolution sampling (F-SDRM) and

multi-resolution sampling (M-SDRM). F-SDRM trains for the full 200 steps while M-SDRM

trains for a random number of timesteps t ∈ T . This provides a more robust sampling space for

SDRM to learn the details of the data distribution.

5.3 A Novel Score Function for SDRM

My primary contribution to this work consists of a novel score function to train the

score-based diffusion model with the VAE encoder and was inspired by denoising score

matching. Score-based training objectives are ideal for the setting of recommender systems.
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Fig. 20. The SDRM architecture including training and sampling methodologies. Importantly,
this module pretrains the encoder and decoder networks together. Then, we train the VAE
encoder with the score-based diffusion model. We apply a novel heuristic score function to
this module and achieve strong performance on generating data and using this data to train
recommender systems. Figure from [83].

Not only is ground truth training data available for these models, but score functions are

naturally unbiased and can be a replacement to optimizing the ELBO.

Denoising score matching seeks to estimate the gradient of the log probability density

function of the data distribution. In denoising score matching, the model is trained to predict

the added noise to the input data. Through this training techniques, the model learns to

estimate the score function of the data distribution and particularly optimizes movement on the

gradient of the log probability density function towards what could be considered a ”cleaner”

sample of the input data which does not contain the added noise.

Our proposed objective function for SDRM utilizes various aspects of the latent variable

encoded by the VAE and the diffusion model latent to our advantage. The proposed

score-based objective function can be seen below.

ℓ(zt) =
||
(
sθ (ẑt)− sθ (zt)

)
−∆θ (zt)||22 + ||sθ (zt)−∆θ (zt)||22
||∆θ (zt)||22

(81)
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zt is the encoder networks latent representation output. ẑt represents a perturbed version of

the latent variable where noise is added according to N (0,σvI). sθ is the score function of the

diffusion model according to the parameters on θ and ∆θ (zt) is the prediction noise at a given

timestep t.

This objective function comprises three distinct components. The first component,

represented by
(
(sθ (ẑt)− sθ (zt)

)
−∆θ (zt)

)
, quantifies and penalizes discrepancies which arise

from the random perturbations to the noisy data on the regenerated diffusion latent ẑt when

compared to ∆θ (zt). The second component,
(
sθ (zt)−∆θ (zt)

)
, measures changes between the

ground truth score function and the approximated noise deviations generated by the VAEs

latent encoding process effectively measuring the accuracy and effectiveness of the encoder

network. The final component, ∆θ (zt), is a denominator which acts as a normalization term to

stabilize the function. This ensures the loss function does not incur numerical instabilities

during the training process. We show this score-based objective is empirically more effective

than other objective functions which have been applied to recommender diffusion models,

including [85] and [84].

5.4 Experimental Settings and Design

In our experiments we explore SDRMs effectiveness utilizing four publicly available data

sets. MovieLens 1M (ML-1M) [86], MovieLens 100k (ML-100k) [86], Amazon Digital Music

(ADM) [87], and Amazon Luxury Beauty (ALB) [87]. Each data sets comprises a wide range

of diverse user-item ratings and contain varying levels of data sparsity. We also remove users

who have not rated 5 items and items which do not have 5 ratings. Table 1 illustrates our data

settings succinctly.

We then evaluate our generated data using a few well known metrics in recommender

settings, Recall@k and NDCG@k, which utilize the top-k metric. These effectively measure

the top@k ranking and its similarity to the ground truth data. We also evaluate our model both

in the augmented data set and fully synthetic data set setting. Notably, the augmented and fully
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Table 1
The statistics for each data set used to train SDRM. Table from [83].

Dataset #Users #Items #Ratings Sparsity
Amazon Luxury Beauty 1,344 729 15,359 98.43%
Amazon Digital Music 10,621 8,582 108,509 99.88%
MovieLens 100k 938 1,008 95,215 89.93%
MovieLens 1M 3,125 6,034 994,338 94.73%

synthetic data set comprise at least 20% of real user data. ”This approach is necessary to show

how synthetic data can enhance the predictive performance on real users, as it is impractical to

measure the effectiveness of synthetic data in a recommendation model without incorporating

some actual user data” [83]. We then apply these generated data sets to three recommendation

algorithms, namely SVD [88], MLP [89], and NeuMF [90], to test the effectiveness of our

generated data. We then compare our F-SDRM and M-SDRM models against other

competitive models which aim to generate user-item data, known as CTGAN [91], TVAE [92],

CODIGEM [85], DiffRec [84], MultiVAE [93], and MultiVAE++ which we use as our

pre-trained multi-nomial VAE for the encoder and decoder.

We also conduct a strong hyperparameter sweep across many variables for the various

components of SDRM. This includes the VAE architecture and its parameters as well as the

score-based diffusion models parameters like timesteps, learning rate and batch size to name a

few.

5.5 SDRM Results

We compare SDRM against other generative recommender models and select various top-k

according to k ∈ (1,3,6,10,20,50). We present Recall@k and NDCG@k over five runs with

its average score and standard deviation. In Table 2 and Table 3 we present our results.

We demonstrate an average improvement of ∼ 4.5% in both Recall@k and NDCG@k,

with some instances reaching a maximum of 24.28% and 21.87% respectively. A significant

improvement over prior approaches. Additionally, through the use of the Jaccard similarity
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Table 2
Overall performance comparison between baselines by training with synthetic and the original

dataset. The best results are in bold and the second best are underlined. Average overall
improvement: Recall@10 4.48%, NDCG@10 5.07%. Prior caption and figure below

from [83].

Model SVD
Dataset ALB ML-100k ML-1M ADM
Baseline Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10
Original 0.3113 0.287 0.3716 0.3973 0.3769 0.4035 0.0624 0.0427
CTGAN 0.2642 0.2407 0.3533 0.3813 0.3652 0.3917 0.0405 0.0267
TVAE 0.3113 0.2873 0.3668 0.3918 0.3638 0.3869 0.0624 0.0427
CODIGEM 0.3025 0.2819 0.3492 0.3745 0.3113 0.3336 0.049 0.0301
DiffRec 0.2936 0.2748 0.37 0.4021 0.3598 0.383 0.0306 0.0228
MultiVAE 0.3226 0.2998 0.3822 0.4103 0.3391 0.3658 0.0612 0.0389
MultiVAE++ 0.3163 0.2912 0.3878 0.4126 0.3717 0.3946 0.0613 0.0406
F-SDRM 0.325 0.2988 0.3924 0.4181 0.3722 0.3977 0.0623 0.041
M-SDRM 0.3249 0.2957 0.3971 0.417 0.372 0.3962 0.0641 0.0442
Improvement 0.74 % -0.33 % 2.39 % 1.33 % -1.26 % -1.44 % 2.72 % 3.51 %

MLP
Original 0.3183 0.3007 0.3569 0.3788 0.3319 0.3558 0.0194 0.0128
CTGAN 0.3188 0.2987 0.3567 0.3781 0.3228 0.3463 0.0208 0.0135
TVAE 0.2438 0.2431 0.3437 0.3622 0.2949 0.3186 0.0184 0.012
CODIGEM 0.3365 0.3071 0.3479 0.3686 0.3132 0.3377 0.0596 0.0385
DiffRec 0.3283 0.3013 0.355 0.3769 0.3246 0.3482 0.0213 0.0139
MultiVAE 0.3328 0.3048 0.053 0.0615 0.3588 0.372 0.0199 0.0137
MultiVAE++ 0.3316 0.3 0.3901 0.4101 0.3528 0.3763 0.0756 0.0489
F-SDRM 0.3246 0.3004 0.3839 0.4055 0.3595 0.3845 0.0146 0.0095
M-SDRM 0.3343 0.303 0.3947 0.419 0.3591 0.384 0.0798 0.0523
Improvement -3.66 % -1.35 % 1.18 % 2.17 % 0.19 % 2.18 % 5.55 % 6.95 %

NeuMF
Original 0.2399 0.0818 0.1006 0.096 0.0113 0.0094 0.0057 0.0011
CTGAN 0.2444 0.0877 0.0889 0.086 0.0219 0.0192 0.007 0.0014
TVAE 0.2439 0.0874 0.1258 0.1282 0.0126 0.0105 0.0053 0.0013
CODIGEM 0.1709 0.0477 0.1015 0.0839 0.0642 0.0601 0.007 0.0014
DiffRec 0.2621 0.0923 0.1147 0.1093 0.0203 0.0178 0.0138 0.0035
MultiVAE 0.2475 0.0826 0.1253 0.118 0.0487 0.0483 0.0154 0.0036
MultiVAE++ 0.2687 0.0877 0.2357 0.1858 0.1046 0.0972 0.0224 0.005
F-SDRM 0.3225 0.109 0.232 0.1891 0.1026 0.0935 0.0234 0.0054
M-SDRM 0.2953 0.1026 0.2425 0.186 0.1059 0.099 0.0273 0.006
Improvement 20.02 % 24.28 % 2.88 % 1.77 % 1.24 % 1.85 % 21.87 % 20 %

metric we demonstrate that our synthetic data in both M-SDRM and F-SDRM achieves over

99% dissimilarity which effectively protects against user privacy concerns.

5.6 Discussion

We believe our approach generates better recommendation data sets because of the

score-based diffusion model which models the VAE’s prior distribution on pθ (z). This process

can improve the resolution of the noise processing before utilizing the decoder network to

decompress the latent variable. Utilizing all timesteps t according to a uniform selection

process also allows for a better model since M-SDRM is better at generating data that

F-SDRM. Our approach directly utilizes many strengths and turns weakness into advantages
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Table 3
Overall performance comparison between baselines by training with synthetic data. The best

results are in bold and the second best are underlined. Average overall improvement:
Recall@10 2.08%, NDCG@10 0.88%. Prior caption and figure below from [83].

Model SVD
Dataset ALB ML-100k ML-1M ADM
Baseline Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10
Original 0.3113 0.287 0.3716 0.3973 0.3769 0.4035 0.0624 0.0427
CTGAN 0.0654 0.056 0.2215 1 0.225 0.2623 0.2769 0.0152 0.0095
TVAE 0.2521 0.2503 0.2641 0.2766 0.3082 0.325 0.0214 0.0143
CODIGEM 0.3044 0.2813 0.2799 0.286 0.2624 0.2774 0.0481 0.0295
DiffRec 0.2702 0.2541 0.3476 0.3624 0.3354 0.3595 0.0258 0.0197
MultiVAE 0.3299 0.3063 0.3724 0.3937 0.3134 0.3359 0.0393 0.0246
MultiVAE++ 0.3406 0.3188 0.3889 0.414 0.3704 0.3935 0.0617 0.0412
F-SDRM 0.3471 0.3229 0.3931 0.4176 0.3707 0.3944 0.0628 0.0428
M-SDRM 0.3384 0.3174 0.3946 0.4176 0.3703 0.3946 0.0622 0.0423
Improvement 1.87% 1.27% 1.45% 0.86% -1.65% -2.21% 0.64% 0.23%
Model MLP
Original 0.3183 0.3007 0.3569 0.3788 0.3319 0.3558 0.0194 0.0128
CTGAN 0.2651 0.2189 0.2017 0.2197 0.2081 0.2216 0.0011 0.0007
TVAE 0.2438 0.2431 0.1334 0.1586 0.1569 0.1674 0.0153 0.0095
CODIGEM 0.1568 0.1012 0.1445 0.1403 0.1882 0.187 0.0249 0.0173
DiffRec 0.3065 0.2947 0.2997 0.3107 0.2349 0.2526 0.0181 0.0115
MultiVAE 0.311 0.2925 0.3359 0.3465 0.3385 0.3633 0.0172 0.012
MultiVAE++ 0.3356 0.3079 0.3488 0.3616 0.3409 0.3636 0.071 0.0492
F-SDRM 0.3375 0.3103 0.3601 0.3754 0.3451 0.3693 0.013 0.0085
M-SDRM 0.3474 0.3142 0.3544 0.3755 0.3438 0.3702 0.0668 0.0451
Improvement 3.51 % 2.04 % 0.89% -0.87 % 1.23% 1.81 % -6.28 % -9.09%
Model NeuMF
Original 0.2399 0.0818 0.1006 0.096 0.0113 0.0094 0.0057 0.0011
CTGAN 0.1786 3 0.0405 0.0532 0.05 0.0053 0.0055 0.0073 0.0014
TVAE 0.0957 0.0231 0.1289 0.1326 0.0237 0.023 0.009 0.0013
CODIGEM 0.1154 0.0294 0.0782 0.0552 0.0606 0.0574 0.0022 0.0004
DiffRec 0.2613 0.0881 0.0726 0.0629 0.0143 0.0134 0.0168 0.0031
MultiVAE 0.0834 0.0196 0.0951 0.0894 0.0198 0.0195 0.0174 0.0042
MultiVAE++ 0.331 0.1143 0.2309 0.1853 0.126 0.1154 0.0259 0.0059
F-SDRM 0.3339 0.1137 0.2421 0.1913 0.1265 0.1146 0.028 0.0058
M-SDRM 0.332 0.1141 0.2303 0.1814 0.1296 0.1212 0.0297 0.0064
Improvement 0.87 % -0.17 % 4.85 % 3.23 % 2.85 % 5.02 % 14.67 % 8.47 %

for the VAE scheme and diffusion model scheme. The high quality and highly flexible nature

of diffusion models coupled with a score-based objective allows SDRM to surpass all existing

data generation techniques in the recommender settings.

5.7 Limitations and Future Work

There are obvious points of improvement including replacing the multi-layered perceptron

with a stronger model. Even clustering data and strong data preprocessing may provide

significant improvements to the quality of SDRM. Additionally, our method can only generate

a single data point at a time. Batching data would be significantly faster and improve the

scaling potential of our model. Additionally, the data sets we tested were small. Exploration
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into testing on larger data sets may yield interesting results or demonstrate weaknesses in our

approach. We leave further exploration to future work.

5.8 Conclusion

In this work, we introduced SDRM as an approach to generate synthetic data for training

recommendation systems. Utilizing a VAE and diffusion framework we successfully captured

strong latent representations and were able to apply a double Gaussian filtering through the

VAE and diffusion to generated novel samples which were significantly dissimilar to the

training data sets. Through our ablation studies we demonstrated SDRM achieved a 4.5%

average improvements in Recall@k and NDCG@k with the best improvement being 24.5%.

We successfully overcame the challenges of data sparsity, while also helping to develop an

approach to improve data set quality through novel sampling. Our studies also bridge a gap in

that is often overlooked in prior literature in benchmarking the generated data results. SDRM

proves to be a strong module capable of generating synthetic data to partially augment or fully

replace recommendation data sets.
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6 CONCLUSION

In this thesis we explored the information processing capabilities of diffusion models.

Utilizing the tools of information theory, we explore diffusion models. We studied two

domains consisting of information-imbalanced data sets and proposed a novel score function

for training SDRM. We also illustrated various relations between DDPMs and DNNs through

an information theoretic approach. We observed class balanced data sets generating classes of

a particular label significantly more than other labels across multiple clean data sets. We

proposed an information-theoretic reasoning in that the entropy of these data points are

imbalanced and proposed potential solutions to alleviate this problem. Particularly through

utilizing the training dynamics of diffusion to balance label reconstruction, maximizing the

entropy of each data point, and or utilizing a classification model with ablations to the

objective function to guide the diffusion generation processes towards a desired class. We then

introduce a novel score function for SDRM with the purpose of generating novel samples

which can augment or replace existing data sets to improve training other recommender

models. We show our SDRM model to reach significant improvements over prior works at an

average improvement of 4.5%.
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